Home
Class 11
MATHS
Let Sn=1+q+q^2 +...+q^n and Tn =1+((q+1)...

Let `S_n=1+q+q^2 +...+q^n` and `T_n =1+((q+1)/2)+((q+1)/2)^2+...((q+1)/2)^n` If `alpha T_100=^101C_1 +^101C_2` x `S_1 ...+^101C_101` x`S_100,` then the value of `alpha` is equal to (A) `2^99` (B) `2^101` (C) `2^100` (D) `-2^100`

A

`2^(100)`

B

200

C

`2^(99)`

D

202

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (J-A)|5 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Do yourself -1|2 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (S-2)|6 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|106 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

Let S_n=1/1^2 + 1/2^2 + 1/3^2 +….. + 1/n^2 and T_n=2 -1/n , then :

Given, s_n=1+q+q^2+.....+q^n ,S_n=1+(q+1)/2+((q+1)/2)^2+...+((q+1)/2)^n ,q!=1 prove that "^(n+1)C_1+^(n+1)C_2s_1+^(n+1)C_3s_2+......+^(n+1)C_(n+1)s_n=2^n S_ndot

If S_n = 1+1/2 + 1/2^2+...+1/2^(n-1) and 2-S_n < 1/100, then the least value of n must be :

If the number of terms in the expansion of (1+x)^(101)(1+x^(2)-x)^(100) is n, then the value of (n)/(25) is euqal to

If alpha is the only positive root of (2^(2014)-1)x^2+(2-2^(2014))x-1=0 . Then the value of (alpha^(2014)-1)p^2+(1-alpha^(2015))p q+1 is equal to (a) 1 (b) 0 (c) pq (d) p^2+p q+1

(C_(0))/(1)+(C_(1))/(2)+(C_(2))/(3)+ . . . .+(C_(100))/(101) equals

If alpha, beta in C are distinct roots of the equation x^2+1=0 then alpha^(101)+beta^(107) is equal to

If f(x)=(x-1)^(100)(x-2)^(2(99))(x-3)^(3(98))…(x-100)^(100), then the value of (f'(101))/(f(101)) is

The coefficient of x^(101) in the expansion of (1 - x) (1- 2x) (1 - 2^(2) x) - (1 - 2^(101) x) is

If r^[th] and (r+1)^[th] term in the expansion of (p+q)^n are equal, then [(n+1)q]/[r(p+q)] is (a) 1/2 (b) 1/4 (c) 1 (d) 0

ALLEN-Solutions of Triangle & Binomial Theorem-EXERCISE (J-M)
  1. The sum of coefficient of integral powers of x in the binomial expansi...

    Text Solution

    |

  2. The value of (.^(21)C(1) - .^(10)C(1)) + (.^(21)C(2) - .^(10)C(2)) + (...

    Text Solution

    |

  3. The sum of the co-efficients of all odd degree terms in the expansion ...

    Text Solution

    |

  4. If the fractional part of the number (2^(403))/(15) is (k)/(15) then k...

    Text Solution

    |

  5. The positive value of lambda for which the coefficient of x^(2) in the...

    Text Solution

    |

  6. The sum of the real values of x for which the middle term in the binom...

    Text Solution

    |

  7. The value of r for which .^(20)C(r ), .^(20)C(r - 1) .^(20)C(1) + .^...

    Text Solution

    |

  8. Let (x+10)^(50)+(x-10)^(50)=a(0)+a(1)x+a(2)x^(2)+...+a(50)x^(50) for a...

    Text Solution

    |

  9. Let Sn=1+q+q^2 +...+q^n and Tn =1+((q+1)/2)+((q+1)/2)^2+...((q+1)/2)^n...

    Text Solution

    |

  10. Ratio of the 5^(th) term from the beginning to the 5^(th) term from th...

    Text Solution

    |

  11. The number of irrational terms in expansion (7^(1/5)-3^(1/10))^60 is ...

    Text Solution

    |

  12. The sum of the series .^(20)C(0)-.^(20)C(1)-.^(20)C(2)-.^(20)C(3)+…+,....

    Text Solution

    |

  13. If some three consecutive coefficeints in the binomial expanison of (x...

    Text Solution

    |

  14. If the coefficients of x^(2) and x^(3)are both zero, in the expansion ...

    Text Solution

    |

  15. The smallest natural number n, such that the coefficient of x in the e...

    Text Solution

    |

  16. If .^(20)C(1)+(2^(2)).^(20)C(2)+(3^(2)).^(20)C(3)+……..+(20^(2)).^(20)C...

    Text Solution

    |

  17. The term independent of x in the expansion of (1/60-(x^(8))/81).(2x^(...

    Text Solution

    |