Home
Class 11
MATHS
Let X = (.^(10)C(1))^(2) + 2(.^(10)C(2))...

Let `X = (.^(10)C_(1))^(2) + 2(.^(10)C_(2))^(2) + 3(.^(10)C_(3))^(2) + "……" + 10(.^(10)C_(10))^(2)`, where `.^(10)C_(r ), r in {1,2,"….",10}` denotes binomial coefficients then the value of `(1)/(1430) X` is `"_____"`.

Text Solution

Verified by Experts

The correct Answer is:
646
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Do yourself -1|2 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Do yourself -2|3 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (J-M)|17 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|106 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

Let X=(\ ^(10)C_1)^2+2(\ ^(10)C_2)^2+3(\ ^(10)C_3)^2+\ ddot\ +10(\ ^(10)C_(10))^2 , where \ ^(10)C_r , r in {1,\ 2,\ ddot,\ 10} denote binomial coefficients. Then, the value of 1/(1430)\ X is _________.

Prove that ^10 C_1(x-1)^2-^(10)C_2(x-2)^2+^(10)C_3(x-3)^2+-^(10)C_(10)(x-10)^2=x^2

"^10(C_0)^2 - "^10(C_1)^2 + "^10(C_2)^2 - ...... - ( "^10C_9)^2 + ( "^10C_10)^2=

The coefficient of x^(-10) in (x^2-1/x^3)^10 , is

Find the sum 2..^(10)C_(0) + (2^(2))/(2).^(10)C_(1) + (2^(3))/(3).^(10)C_(2)+(2^(4))/(4).^(10)C_(3)+"...."+(2^(11))/(11).^(10)C_(10) .

The value of (.^(21)C_(1) - .^(10)C_(1)) + (.^(21)C_(2) - .^(10)C_(2)) + (.^(21)C_(3) - .^(10)C_(3)) + (.^(21)C_(4) - .^(10)C_(4)) + … + (.^(21)C_(10) - .^(10)C_(10)) is

The value of ((C_(1))/(C_(0))+2(C_(2))/(C_(1))+3(C_(3))/(C_(2))+"......"+10(C_(10))/(C_(9))) (where C_(r) = .^(10)C_(r) ), is 11lambda , then value of lambda is

"^(30)C_(0)*^(20)C_(10)+^(31)C_(1)*^(19)C_(10)+^(32)C_(2)*18C_(10)+....^(40)C_(10)*^(10)C_(10) is equal to

Find the sum .^(10)C_1+^(10)C_3+^(10)C_5+^(10)C_7+^(10)C_9

Find the coefficient of x^(10) in the expansion of (1-x^(2))^(10)