Home
Class 11
PHYSICS
In a parallelogram ABCD. Prove that vec(...

In a parallelogram ABCD. Prove that `vec(AC)+ vec (BD) = 2 vec(BC)`

Text Solution

Verified by Experts

`vec (AC) = vec(AB) +vec (BC) & vec (BD) + vec (CD)` [applying triangle law of vectors]
Now `vec(AC) + vec(BD) = vec(AB) + vec (BC) + vec(BC) + vec(CD) = vec(AB) + 2vec(BC) + vec(CD)`
But `vec(CD) =-vec(AB)` `" "therefore vec(AC) + vec(BD) = vec(AB) + 2 vec(BC) - vec(AB) = 2vec(BC)`
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 1|2 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 2|3 Videos
  • CENTRE OF MASS

    ALLEN|Exercise EXERCISE-V B|19 Videos

Similar Questions

Explore conceptually related problems

vec(AC) and vec(BD) are the diagonals of a parallelogram ABCD. Prove that (i) vec(AC) + vec(BD) - 2 vec(BC) (ii) vec(AC) - vec(BD) - 2vec(AB)

Given a parallelogram ABCD . If |vec(AB)|=a, |vec(AD)| = b & |vec(AC)| = c , then vec(DB) . vec(AB) has the value

If ABCD is a parallelogram, then vec(AC) - vec(BD) =

E and F are the interior points on the sides BC and CD of a parallelogram ABCD. Let vec(BE)=4vec(EC) and vec(CF)=4vec(FD) . If the line EF meets the diagonal AC in G, then vec(AG)=lambda vec(AC) , where lambda is equal to :

Let B_1,C_1 and D_1 are points on AB,AC and AD of the parallelogram ABCD, such that vec(AB_1)=k_1vec(AC,) vec(AC_1)=k_2vec(AC) and vec(AD_1)=k_2 vec(AD,) where k_1,k_2 and k_3 are scalar.

Prove that the area of a parallelogram with sides vec(A) and vec(B) " is " vec(A) xx vec(B)

In a regular hexagon ABCDEF, prove that vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=3vec(AD)

In a quadrilateral ABCD, vec(AB) + vec(DC) =

ABCD is a parallelogram with vec(AC) = hati - 2hatj + hatk and vec(BD) = -hati + 2hatj - 5hatk . Area of this parallelogram is equal to:

Let ABCD be a parallelogram such that vec A B= vec q , vec A D= vec p""a n d""/_B A D be an acute angle. If vec r is the vector that coincides with the altitude directed from the vertex B to the side AD, then vec r is given by (1) vec r=3 vec q-(3( vec pdot vec q))/(( vec pdot vec p)) vec p (2) vec r=- vec q+(( vec pdot vec q)/( vec pdot vec p)) vec p (3) vec r= vec q+(( vec pdot vec q)/( vec pdot vec p)) vec p (4) vec r=-3 vec q+(3( vec pdot vec q))/(( vec pdot vec p)) vec p