Home
Class 11
PHYSICS
If vecP=3hati+4hatj+12hatk then find mag...

If `vecP=3hati+4hatj+12hatk` then find magnitude and the direction cosines of the `vecP`.

Text Solution

Verified by Experts

Magnitude of `vecP: |vecP|= sqrt(P_(x)^(2) + P_(y)^(2) + P _(z)^(2)) = sqrt(3^(2) + 4^(2) + 12^(2))= sqrt(169) = 13`
Direction cosines : `cosalpha = (P_(x))/(P)= (3)/(13), cos beta = (P_(y))/(P) = (4)/(13), cos gamma = (P_(x))/(P) = (12)/(13) `
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 1|2 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 2|3 Videos
  • CENTRE OF MASS

    ALLEN|Exercise EXERCISE-V B|19 Videos

Similar Questions

Explore conceptually related problems

Find the direction cosines of the vector: hati+2hatj+6hatk

Find the direction cosines of the vector 2hati+2hatj-hatk

Find magnitude and direction cosines of the vector, A= (3hati - 4hatj+5hatk).

If vec(OP)=2hati+3hatj-hatk and vec(OQ)=5hati+4hatj-3hatk . Find vec(PQ) and the direction cosines of vec(PQ) .

If vec(OP)=2hati+3hatj-hatk and vec(OQ)=3hati-4hatj+2hatk find the modulus and direction cosines of vec(PQ) .

(i) Find the unit vector in the direction of veca+vecb if veca=2hati-hatj+2hatk , and vecb=-hati+hatj-hatk (ii) Find the direction ratios and direction cosines of the vector veca=5hati+3hatj-4hatk .

The position vectors of A and B are 3hati - hatj +7hatk and 4hati-3hatj-hatk . Find the magnitude and direction cosines of vec(AB) .

vecP = (2hati - 2hatj +hatk) , then find |vecP|

Find the direction cosines of the vector hati+2hatj+3hatk .

If vecr=2hati-3hatj+2hatk find the direction cosines of vector.