Home
Class 11
PHYSICS
Obtain the different coefficient of the ...

Obtain the different coefficient of the following :
(i) `(x-1)(2x+5)`
(ii) `(1)/(2x+1)`
(iii) `(3x+4)/(4x+5)`
(iv) `(x^(2))/(x^(3)+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the differential coefficients of the given functions, we will apply the rules of differentiation step by step. ### (i) For the function \( y = (x - 1)(2x + 5) \) 1. **Identify the functions**: Let \( u = x - 1 \) and \( v = 2x + 5 \). 2. **Differentiate**: - \( \frac{du}{dx} = 1 \) - \( \frac{dv}{dx} = 2 \) 3. **Apply the product rule**: \[ \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} = (x - 1)(2) + (2x + 5)(1) \] 4. **Simplify**: \[ \frac{dy}{dx} = 2(x - 1) + (2x + 5) = 2x - 2 + 2x + 5 = 4x + 3 \] ### (ii) For the function \( y = \frac{1}{2x + 1} \) 1. **Rewrite the function**: \( y = (2x + 1)^{-1} \). 2. **Differentiate using the chain rule**: \[ \frac{dy}{dx} = -1(2x + 1)^{-2} \cdot \frac{d(2x + 1)}{dx} = -1(2x + 1)^{-2} \cdot 2 \] 3. **Simplify**: \[ \frac{dy}{dx} = -\frac{2}{(2x + 1)^2} \] ### (iii) For the function \( y = \frac{3x + 4}{4x + 5} \) 1. **Identify the functions**: Let \( u = 3x + 4 \) and \( v = 4x + 5 \). 2. **Differentiate**: - \( \frac{du}{dx} = 3 \) - \( \frac{dv}{dx} = 4 \) 3. **Apply the quotient rule**: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} = \frac{(4x + 5)(3) - (3x + 4)(4)}{(4x + 5)^2} \] 4. **Simplify**: \[ = \frac{12x + 15 - (12x + 16)}{(4x + 5)^2} = \frac{-1}{(4x + 5)^2} \] ### (iv) For the function \( y = \frac{x^2}{x^3 + 1} \) 1. **Identify the functions**: Let \( u = x^2 \) and \( v = x^3 + 1 \). 2. **Differentiate**: - \( \frac{du}{dx} = 2x \) - \( \frac{dv}{dx} = 3x^2 \) 3. **Apply the quotient rule**: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} = \frac{(x^3 + 1)(2x) - (x^2)(3x^2)}{(x^3 + 1)^2} \] 4. **Simplify**: \[ = \frac{2x^4 + 2x - 3x^4}{(x^3 + 1)^2} = \frac{-x^4 + 2x}{(x^3 + 1)^2} \] ### Summary of Results 1. \( \frac{dy}{dx} = 4x + 3 \) for \( (x - 1)(2x + 5) \) 2. \( \frac{dy}{dx} = -\frac{2}{(2x + 1)^2} \) for \( \frac{1}{2x + 1} \) 3. \( \frac{dy}{dx} = -\frac{1}{(4x + 5)^2} \) for \( \frac{3x + 4}{4x + 5} \) 4. \( \frac{dy}{dx} = \frac{-x^4 + 2x}{(x^3 + 1)^2} \) for \( \frac{x^2}{x^3 + 1} \)

To find the differential coefficients of the given functions, we will apply the rules of differentiation step by step. ### (i) For the function \( y = (x - 1)(2x + 5) \) 1. **Identify the functions**: Let \( u = x - 1 \) and \( v = 2x + 5 \). 2. **Differentiate**: - \( \frac{du}{dx} = 1 \) - \( \frac{dv}{dx} = 2 \) ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 4|1 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 5|1 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 2|3 Videos
  • CENTRE OF MASS

    ALLEN|Exercise EXERCISE-V B|19 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following wrto x :(i) 6x^(-2) (ii) (1)/(5)x^(5) (iii) (1)/(3x)

If x=3+2sqrt(2) , find : (i) (1)/(x) (ii) x-(1)/(x) (iii) (x-(1)/(x))^(3) (iv)x^(3)-(1)/(x^(3))

Find the following products: (i) (y^2-4)(y^2-3) (ii) (x+4/3)(x+3/4) (iii) (3x+5)(3x+11) (iv) (2x^2-3)(2x^2+5)

Find the degree of each of the following polynomials : (i) 3x^(4)-x^(2)+8 " " (ii) y^(2)-5y+7 " " (iii) 3x+4 " " (iv) 3 (v) x-2x^(2)+5x^(7) " " (vi) 2y^(2)-5y^(6)+1 " "(vii) x^(3)-1 " " (viii) 3x+5x^(5)+1

Solve the following equations: (i) 2^(x-5)=256 (ii) 2^(x+3)=4^(x-1)

If x=3+2sqrt(2) , then find : (i)(1)/(x)" "(ii)x+(1)/(x)" "(iii)x-(1)/(x)" "(iv)x^(2)-(1)/(x^(2))

Expand : (i) (3a-5b)^(2) " " (ii) (a+(1)/(a))^(2) " " (iii) (2x-(1)/(2x))^(2) .

write the coefficient of x^(2) in each of the following (i) (pi)/(6)x+x^(2)-1 (ii) 3x-5 (iii) (x-1)(3x-4) (iv) (2x-5)(2x^(2)-3x+1)

Find the degree of each of the following polynomials : (i) 5x^(2)-2x+1 " " (ii) 1-5t+t^(4) " " (iii) 7 " " (iv) x^(4)-3x^(6)+2

Draw the graph of each of the following : (i)(x)/(3)+(y)/(5)=1 , (ii) (2x+6)/(5)=y-1 , (iii) 3x+4y=12 , (iv)3x-y=2