Home
Class 11
PHYSICS
If a vector vec(A) make angles alpha , b...

If a vector `vec(A)` make angles `alpha , beta ` and `gamma`, respectively , with the `X , Y` and `Z` axes , then `sin^(2) alpha + sin^(2) beta + sin^(2) gamma =`

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
3

`cos^(2)alpha + cos^(2) beta + cos^(2) gamma = 1 `
`1-sin^(2)alpha + 1-sin^(2)beta+1-sin^(2)gamma =1 `
`3- (sin^(2) alpha + sin^(2) beta + sin^(2) gamma)=1`
`sin^(2) alpha + sin^(2) beta + sin^(2) gamma = 3-1 =2`
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise DOT PRODUCT|20 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise CROSS PRODUCT|15 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise ADDITON & SUBTRACTION, MULTIPLICATION & DIVISION OF A VECTOR BY A SCALAR|21 Videos
  • CENTRE OF MASS

    ALLEN|Exercise EXERCISE-V B|19 Videos

Similar Questions

Explore conceptually related problems

Vector vecP angle alpha,beta and gamma with the x,y and z axes respectively. Then sin^(2)alpha+sin^(2)beta+sin^(2)gamma=

A vector makes angles alpha,beta "and" gamma with the X,Y and Z axes respectively . Find the value of the expression (sin^(2)alpha+sin^(2)beta+sin^(2)gamma)/(cos^(2)alpha+cos^(2)beta+cos^(2)gamma)

If a line makes angles alpha, beta, gamma when the positive direction of coordinates axes, then write the value of sin^(2) alpha + sin^(2) beta + sin^(2) gamma .

If vec(A) makes an angle alpha, beta and gamma from x,y and z axis respectively then sin^(2)alpha+sin^(2) beta+sin^(2) gamma=

If a vector makes angle alpha,beta,gamma with OX, OY and OZ respectively, then write the value of sin^2alpha+sin^2beta+sin^2gammadot

If a vector makes angles alpha,beta,gamma. with . OX ,O Ya n dO Z respectively, prove that sin^2alpha+sin^2beta+sin^2gamma=2.

If a line makes angles alpha,beta,gamma with the positive direction of coordinate axes, then write the value of sin^2alpha+sin^2beta+sin^2gammadot

Points veca , vecb vecc and vecd are coplanar and (sin alpha)veca + (2sin 2beta) vecb + (3sin 3gamma) vecc - vecd= vec0 . Then the least value of sin^(2) alpha + sin^(2) 2beta + sin^(2) 3gamma is

A line makes angles alpha,beta and gamma with the coordinate axes. If alpha+beta=90^0, then find gamma .

If a line makes anles alpha, beta, gamma with the coordinate axes, porve that sin^2alpha+sin^2beta+sin^2gamma=2