Home
Class 11
PHYSICS
If |vecA xx vecB| = sqrt3 vecA *vecB, th...

If `|vecA xx vecB| = sqrt3 vecA *vecB`, then the value of `|vecA + vecB|` is :

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ |\vec{A} \times \vec{B}| = \sqrt{3} \, \vec{A} \cdot \vec{B} \] ### Step 1: Understand the relationship between cross product and dot product The magnitude of the cross product can be expressed as: \[ |\vec{A} \times \vec{B}| = |\vec{A}| |\vec{B}| \sin \theta \] And the dot product can be expressed as: \[ \vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta \] ### Step 2: Substitute the expressions into the equation Substituting these expressions into the given equation, we have: \[ |\vec{A}| |\vec{B}| \sin \theta = \sqrt{3} \, |\vec{A}| |\vec{B}| \cos \theta \] ### Step 3: Cancel out the common terms Assuming \( |\vec{A}| \) and \( |\vec{B}| \) are not zero, we can divide both sides by \( |\vec{A}| |\vec{B}| \): \[ \sin \theta = \sqrt{3} \cos \theta \] ### Step 4: Express in terms of tangent Dividing both sides by \( \cos \theta \) gives: \[ \tan \theta = \sqrt{3} \] ### Step 5: Find the angle \( \theta \) The angle \( \theta \) that satisfies \( \tan \theta = \sqrt{3} \) is: \[ \theta = 60^\circ \] ### Step 6: Calculate the magnitude of \( |\vec{A} + \vec{B}| \) Now, we can find the magnitude of the sum of the vectors: \[ |\vec{A} + \vec{B}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + 2 |\vec{A}| |\vec{B}| \cos \theta} \] ### Step 7: Substitute \( \cos 60^\circ \) Since \( \cos 60^\circ = \frac{1}{2} \): \[ |\vec{A} + \vec{B}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + 2 |\vec{A}| |\vec{B}| \cdot \frac{1}{2}} \] ### Step 8: Simplify the expression This simplifies to: \[ |\vec{A} + \vec{B}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + |\vec{A}| |\vec{B}|} \] ### Final Result Thus, the value of \( |\vec{A} + \vec{B}| \) is: \[ |\vec{A} + \vec{B}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + |\vec{A}| |\vec{B}|} \]

To solve the problem, we start with the given equation: \[ |\vec{A} \times \vec{B}| = \sqrt{3} \, \vec{A} \cdot \vec{B} \] ### Step 1: Understand the relationship between cross product and dot product The magnitude of the cross product can be expressed as: ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise EXERCISE-III CHECK YOUR UNDERSTANDING|15 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise EXERCISE-IV ASSERTION & REASON|11 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise CROSS PRODUCT|15 Videos
  • CENTRE OF MASS

    ALLEN|Exercise EXERCISE-V B|19 Videos

Similar Questions

Explore conceptually related problems

If |vecAxxvecB|=sqrt(3) vecA.vecB , then the value of |vecA+vecB| is

If |vecA xx vecB| = |vecA*vecB| , then the angle between vecA and vecB will be :

If |vecA xx vecB| = vecA.vecB then the angle between vecA and vecB is :

If |veca| = 10, |vecb|=2 and veca.vecb=12 , then the value of |veca xx vecb| is:

If sqrt3|vecAxx vecB|= vecA*vecB , then find the angle between vecA and vecB .

If veca, vecb,vecc are three non-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

If |veca|=|vecb|=|veca+vecb|=1 then find the value of |veca-vecb|

If veca,vecb are vectors perpendicular to each other and |veca|=2, |vecb|=3, vecc xx veca=vecb , then the least value of 2|vecc-veca| is

vecA and vecB are two vectors and theta is the angle between them, if |vecA xx vecB|=sqrt(3)(vecA.vecB) the value of theta is:-

If veca,vecb are two unit vectors such that |veca + vecb| = 2sqrt3 and |veca -vecb|=6 then the angle between veca and vecb , is