Home
Class 11
PHYSICS
Find dimensional formula: (i) (dx)/(dt...

Find dimensional formula:
(i) `(dx)/(dt)` (ii) `m(d^(2)x)/(dt^(2))` (iii) `int vdt` (iv) `int adt`
where `x rarr` displacement, `t rarr` time, `v rarr` velocity and `a rarr` acceleration

Text Solution

Verified by Experts

(i) `[(dx)/(dt)] = [(x)/(t)] = [(L)/(T)] = [M^(0) L ^(1) T^(-1)]`
(ii) `[m(d^(2)x)/(dt^(2))] = [m(x)/(t^(2))] = [(ML)/(T^(2)) ] = [M^(1)L^(1)T^(-2)]`
(iii) `[int vdt] = [vt] = [LT^(-1) xx T ] = [M^(0) L^(1)T^(0)]`
(iv) `[int adt] = [at] = [ LT^(-2) xx T] = [M^(0) L^(1) T^(-1)]`
Promotional Banner

Topper's Solved these Questions

  • PHYSICAL WORLD, UNITS AND DIMENSIONS & ERRORS IN MEASUREMENT

    ALLEN|Exercise BEGINNER S BOX-1|2 Videos
  • PHYSICAL WORLD, UNITS AND DIMENSIONS & ERRORS IN MEASUREMENT

    ALLEN|Exercise BEGINNER S BOX-2|4 Videos
  • MISCELLANEOUS

    ALLEN|Exercise Question|1 Videos
  • SEMICONDUCTORS

    ALLEN|Exercise Part-3(Exercise-4)|51 Videos

Similar Questions

Explore conceptually related problems

Evaluate: (i) int4x^5\ dx (ii) int2sinx\ dx (iii) int3^(x+2)\ dx (iv) int1/2s e c^2x\ dx

If y = int_(4)^(4x^(2))t^(4)e^(4t)dt , find (d^(2)y)/(dx^(2))

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

If (d)/(dx)(int_(0)^(y)e^(-t^(2))dt+int_(0)^(x^(2)) sin^(2) tdt)=0, "find" (dy)/(dx).

Integrate the following : (i) int(t-(1)/(t))^(2)" dt " (ii) intsin(10t-50)" dt " (iii) inte^((100t+6))" dt "

Let f(t)="ln"(t) . Then, (d)/(dx)(int_(x^(2))^(x^(3))f(t)" dt")

Evaluate (d)/(dx)(int_(1//x)^(sqrtx) cos t^(2) dt)

Find the points of minima for f(x)=int_0^x t(t-1)(t-2)dt

Find the points of minima for f(x)=int_0^x t(t-1)(t-2)dt

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .