Home
Class 12
PHYSICS
Integrate the following (1)intx^(-3/2)...

Integrate the following
(1)`intx^(-3/2)dx`
(2)`intsin60^(@)dx`
(3)`int(1)/(10x)dx`
(4)`int(2x^(3)-x^(2)+1)dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve each of the integrals step by step. ### (1) Integrate \( \int x^{-\frac{3}{2}} \, dx \) **Step 1:** Identify the integral formula. The integral of \( x^n \) is given by: \[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \] where \( n \neq -1 \). **Step 2:** Apply the formula. Here, \( n = -\frac{3}{2} \). Thus, we have: \[ n + 1 = -\frac{3}{2} + 1 = -\frac{1}{2} \] So, \[ \int x^{-\frac{3}{2}} \, dx = \frac{x^{-\frac{1}{2}}}{-\frac{1}{2}} + C = -2 x^{-\frac{1}{2}} + C \] **Final Answer for (1):** \[ \int x^{-\frac{3}{2}} \, dx = -2 x^{-\frac{1}{2}} + C \] --- ### (2) Integrate \( \int \sin 60^\circ \, dx \) **Step 1:** Identify the value of \( \sin 60^\circ \). \[ \sin 60^\circ = \frac{\sqrt{3}}{2} \] **Step 2:** Factor out the constant. \[ \int \sin 60^\circ \, dx = \int \frac{\sqrt{3}}{2} \, dx = \frac{\sqrt{3}}{2} \int dx \] **Step 3:** Integrate \( dx \). \[ \int dx = x + C \] **Final Answer for (2):** \[ \int \sin 60^\circ \, dx = \frac{\sqrt{3}}{2} x + C \] --- ### (3) Integrate \( \int \frac{1}{10x} \, dx \) **Step 1:** Factor out the constant. \[ \int \frac{1}{10x} \, dx = \frac{1}{10} \int \frac{1}{x} \, dx \] **Step 2:** Integrate \( \frac{1}{x} \). \[ \int \frac{1}{x} \, dx = \ln |x| + C \] **Final Answer for (3):** \[ \int \frac{1}{10x} \, dx = \frac{1}{10} \ln |x| + C \] --- ### (4) Integrate \( \int (2x^3 - x^2 + 1) \, dx \) **Step 1:** Integrate each term separately. \[ \int (2x^3 - x^2 + 1) \, dx = \int 2x^3 \, dx - \int x^2 \, dx + \int 1 \, dx \] **Step 2:** Apply the integral formula to each term. 1. For \( \int 2x^3 \, dx \): \[ = 2 \cdot \frac{x^{4}}{4} = \frac{1}{2} x^4 \] 2. For \( \int x^2 \, dx \): \[ = \frac{x^{3}}{3} \] 3. For \( \int 1 \, dx \): \[ = x \] **Step 3:** Combine the results. \[ \int (2x^3 - x^2 + 1) \, dx = \frac{1}{2} x^4 - \frac{1}{3} x^3 + x + C \] **Final Answer for (4):** \[ \int (2x^3 - x^2 + 1) \, dx = \frac{1}{2} x^4 - \frac{1}{3} x^3 + x + C \] --- ### Summary of Answers: 1. \( \int x^{-\frac{3}{2}} \, dx = -2 x^{-\frac{1}{2}} + C \) 2. \( \int \sin 60^\circ \, dx = \frac{\sqrt{3}}{2} x + C \) 3. \( \int \frac{1}{10x} \, dx = \frac{1}{10} \ln |x| + C \) 4. \( \int (2x^3 - x^2 + 1) \, dx = \frac{1}{2} x^4 - \frac{1}{3} x^3 + x + C \) ---
Promotional Banner

Topper's Solved these Questions

  • RACE

    ALLEN|Exercise Basic Maths (Graphs))|29 Videos
  • RACE

    ALLEN|Exercise Basic Maths (Co-ordinate & Algebra)|37 Videos
  • RACE

    ALLEN|Exercise Basic Maths (Differentiation)|38 Videos
  • NEWTONS LAWS OF MOTION

    ALLEN|Exercise EXERCISE-III|28 Videos
  • SIMPLE HARMONIC MOTION

    ALLEN|Exercise Example|1 Videos

Similar Questions

Explore conceptually related problems

int ((1+x)^3)/(x^2) dx

int_(1)^(2) (x^3+1) dx

Find the following integrals. 1. int 3x^(7)dx 2. int 4 sqrt(x)dx 3. int(dx)/(sqrt(x)) 4. int(x^(3)-5x^(2)+7x-11)dx 5. int 3 xdx 6. int 5x^(2)dx 7. int(1)/(2)x^(3)dx

int(3x+1)/(2x^(2)+x-1)dx

(1) int(2x+3)/((x-1)(x-2))dx

(1) int(2x+3)/((x-1)(x-2))dx

intx^3/(1+x^2)^2dx

int 1/(2x^2+3x+4) dx

intx/(x^2+2)^(1/3)dx

Evaluate each of the following integrals: (i) intx^4\ dx (ii) intx^(5//4)\ dx (iii) int1/(x^5)\ dx (iv) int1/(x^(3//2))\ dx