Home
Class 12
PHYSICS
(5)Value of int(0)^(2)3x^(2)dx+int(0)^(p...

(5)Value of `int_(0)^(2)3x^(2)dx+int_(0)^(pi//2)sinxdx`is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the following expression: \[ \int_{0}^{2} 3x^{2} \, dx + \int_{0}^{\frac{\pi}{2}} \sin x \, dx \] ### Step 1: Evaluate the first integral \(\int_{0}^{2} 3x^{2} \, dx\) 1. **Factor out the constant**: The constant \(3\) can be taken outside the integral. \[ \int_{0}^{2} 3x^{2} \, dx = 3 \int_{0}^{2} x^{2} \, dx \] 2. **Use the power rule for integration**: The integral of \(x^{n}\) is given by \(\frac{x^{n+1}}{n+1}\). \[ \int x^{2} \, dx = \frac{x^{3}}{3} \] 3. **Apply the limits from \(0\) to \(2\)**: \[ 3 \left[ \frac{x^{3}}{3} \right]_{0}^{2} = 3 \left( \frac{2^{3}}{3} - \frac{0^{3}}{3} \right) = 3 \left( \frac{8}{3} - 0 \right) = 8 \] ### Step 2: Evaluate the second integral \(\int_{0}^{\frac{\pi}{2}} \sin x \, dx\) 1. **Use the known integral of sine**: \[ \int \sin x \, dx = -\cos x \] 2. **Apply the limits from \(0\) to \(\frac{\pi}{2}\)**: \[ \left[ -\cos x \right]_{0}^{\frac{\pi}{2}} = -\cos\left(\frac{\pi}{2}\right) - (-\cos(0)) = -0 + 1 = 1 \] ### Step 3: Combine the results Now, we combine the results of both integrals: \[ \int_{0}^{2} 3x^{2} \, dx + \int_{0}^{\frac{\pi}{2}} \sin x \, dx = 8 + 1 = 9 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{9} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • RACE

    ALLEN|Exercise Basic Maths (Graphs))|29 Videos
  • RACE

    ALLEN|Exercise Basic Maths (Co-ordinate & Algebra)|37 Videos
  • RACE

    ALLEN|Exercise Basic Maths (Differentiation)|38 Videos
  • NEWTONS LAWS OF MOTION

    ALLEN|Exercise EXERCISE-III|28 Videos
  • SIMPLE HARMONIC MOTION

    ALLEN|Exercise Example|1 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi) sin 3x dx

int_(0)^(pi//2) cos 3x dx

int_(0)^(pi) [2sin x]dx=

int_(0)^(pi//2) sin^(2) x dx

int_(0)^(pi/2) cos 2x dx

Evaluate the following integrals (i) int_(R)^(oo)(GMm)/(x^(2))dx (ii) int_(r_(1))^(r_(2)) -k(q_1q_2)/(x^(2))dx (iii) int_(u)^(v) Mv dv (iv) int_(0)^(oo) x^(-1//2) dx (v) int_(0)^(pi//2) sinx dx (vi) int_(0)^(pi//2) cosx dx (vii) int_(-pi//2)^(pi//2) cos x dx

Evaluate: int_(0)^(pi//2)sinxdx

int_(0)^(pi/2) cos^(2) x dx

int_(0)^(pi) x sin^(2) x dx

int_(0)^(pi//2) x sin x cos x dx