Home
Class 12
PHYSICS
If vecA 2 hati +hatj -hatk, vecB=hati +2...

If `vecA 2 hati +hatj -hatk, vecB=hati +2hatj +3hatk, vecC=6hati -2hatj-6hatk` angle between `(vecA+vecB) and vecC` will be

A

`30^(@)`

B

`45^(@)`

C

`60^(@)`

D

`90^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vectors \(\vec{A} + \vec{B}\) and \(\vec{C}\), we will follow these steps: ### Step 1: Calculate \(\vec{A} + \vec{B}\) Given: \[ \vec{A} = 2\hat{i} + \hat{j} - \hat{k} \] \[ \vec{B} = \hat{i} + 2\hat{j} + 3\hat{k} \] Now, we add \(\vec{A}\) and \(\vec{B}\): \[ \vec{A} + \vec{B} = (2\hat{i} + \hat{j} - \hat{k}) + (\hat{i} + 2\hat{j} + 3\hat{k}) \] Combine the components: \[ = (2 + 1)\hat{i} + (1 + 2)\hat{j} + (-1 + 3)\hat{k} \] \[ = 3\hat{i} + 3\hat{j} + 2\hat{k} \] ### Step 2: Calculate the Magnitude of \(\vec{A} + \vec{B}\) The magnitude of a vector \(\vec{V} = x\hat{i} + y\hat{j} + z\hat{k}\) is given by: \[ |\vec{V}| = \sqrt{x^2 + y^2 + z^2} \] For \(\vec{A} + \vec{B} = 3\hat{i} + 3\hat{j} + 2\hat{k}\): \[ |\vec{A} + \vec{B}| = \sqrt{3^2 + 3^2 + 2^2} = \sqrt{9 + 9 + 4} = \sqrt{22} \] ### Step 3: Calculate the Magnitude of \(\vec{C}\) Given: \[ \vec{C} = 6\hat{i} - 2\hat{j} - 6\hat{k} \] Now, calculate its magnitude: \[ |\vec{C}| = \sqrt{6^2 + (-2)^2 + (-6)^2} = \sqrt{36 + 4 + 36} = \sqrt{76} \] ### Step 4: Calculate the Dot Product \((\vec{A} + \vec{B}) \cdot \vec{C}\) The dot product of two vectors \(\vec{X} = x_1\hat{i} + y_1\hat{j} + z_1\hat{k}\) and \(\vec{Y} = x_2\hat{i} + y_2\hat{j} + z_2\hat{k}\) is given by: \[ \vec{X} \cdot \vec{Y} = x_1 x_2 + y_1 y_2 + z_1 z_2 \] For \(\vec{A} + \vec{B} = 3\hat{i} + 3\hat{j} + 2\hat{k}\) and \(\vec{C} = 6\hat{i} - 2\hat{j} - 6\hat{k}\): \[ (\vec{A} + \vec{B}) \cdot \vec{C} = (3)(6) + (3)(-2) + (2)(-6) \] \[ = 18 - 6 - 12 = 0 \] ### Step 5: Calculate the Angle \(\theta\) The cosine of the angle \(\theta\) between two vectors is given by: \[ \cos \theta = \frac{(\vec{A} + \vec{B}) \cdot \vec{C}}{|\vec{A} + \vec{B}| |\vec{C}|} \] Substituting the values we found: \[ \cos \theta = \frac{0}{|\vec{A} + \vec{B}| |\vec{C}|} = 0 \] Since \(\cos \theta = 0\), we find that: \[ \theta = 90^\circ \] ### Final Answer The angle between \((\vec{A} + \vec{B})\) and \(\vec{C}\) is \(90^\circ\). ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Given the vector vecA=2hati+3hatj-hatk, vecB=3hati-2hatj-2hatk & vecC=phati+phatj+phatk . Find the angle between (vecA-vecB) &vecC

If vecA= hati+2hatj+3hatk, vecB=-hati+hatj + 4hatk and vecC= 3hati-3hatj-12hatk , then find the angle between the vector (vecA+vecB+vecC) and (vecAxx vecB) in degrees.

Statement 1: vecA=2hati + 3hatj + 6hatk , vecB=hati + hatj - 2hatk and vecC=hati + 2hatj + hatk then |vecAxx (vecAxx(vecAxxvecB)).vecC|= 243 Statement 2: |vecAxx(vecAxx(vecAxxvecB)).vecC|=|vecA|^(2)|[vecA vecB vecC]|

If vecA=2hati-2hatj-hatk and vecB=hati+hatj , then : (a) Find angle between vecA and vecB .

If veca =hati + hatj-hatk, vecb = - hati + 2hatj + 2hatk and vecc = - hati +2hatj -hatk , then a unit vector normal to the vectors veca + vecb and vecb -vecc , is

Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj - hatk be three vectors. A vectors vecv in the plane of veca and vecb , whose projection on vecc is 1/sqrt3 is given by

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

Let veca -2hati + hatj +hatk , vecb =hati + 2hatj +hatk and vecc = 2hati -3hatj +4hatk . A " vector " vecr " satisfying " vecr xx vecb = vecc xx vecb and vecr . Veca =0 is

If veca=hati-2hatj+3hatk, vecb=2hati+3hatj-hatk and vecc=rhati+hatj+(2r-1)hatk are three vectors such that vecc is parallel to the plane of veca and vecb then r is equal to,

ALLEN-TEST PAPER 4-PHYSICS
  1. One of the two rectangular components of a force is 20 N and it makes ...

    Text Solution

    |

  2. Three forcs acting on body are shown in the figure . To have the resul...

    Text Solution

    |

  3. If vecA 2 hati +hatj -hatk, vecB=hati +2hatj +3hatk, vecC=6hati -2hatj...

    Text Solution

    |

  4. The vector component of vector vecA =3hati +4hatj +5hatk along vecto...

    Text Solution

    |

  5. The angle between the vectors vecA and vecB is theta. The value of v...

    Text Solution

    |

  6. The minimum number of vectors having different planes which can be add...

    Text Solution

    |

  7. Find a unit vector perpendicular to each one of the vectors vec a =4ha...

    Text Solution

    |

  8. If veca=2hati+6hatj +3hatk, vecb=hati+lamdahatj+muhatk if veca xxvecb...

    Text Solution

    |

  9. A plate of mass 10 gm is in equillibrium in air due to the force exter...

    Text Solution

    |

  10. A laser beam of power 20W incident normally on a surface. if 25% light...

    Text Solution

    |

  11. How many photons per second does a one watt bulb emit if its efficienc...

    Text Solution

    |

  12. A hydrogen atom moving at a speed v absorbs a photon of wavelength 122...

    Text Solution

    |

  13. When a metallic surface is illuminated by a monochromatic light of lam...

    Text Solution

    |

  14. Photoelectric emission is observed from a metallic surface for frequen...

    Text Solution

    |

  15. Electric field associated with a light wave is given E= E(0) sin [1.57...

    Text Solution

    |

  16. When a monochromatic point source of light is at a distance of 0.2 m...

    Text Solution

    |

  17. Light of wavelength 200 nm incident on a metal surface of threshold wa...

    Text Solution

    |

  18. For a photoelectric experiment graph between kinetic energy of fastest...

    Text Solution

    |

  19. If y=5 (sin 100^(@)cos 27^(@) +cos 100^(@)sin 27^(@)) the value of y i...

    Text Solution

    |

  20. Given that =(10)/(sin x+ sqrt3 cos x) the minimum positive value of y ...

    Text Solution

    |