Home
Class 14
MATHS
The value of 2^(2-log(2)^(5)) is...

The value of `2^(2-log_(2)^(5))` is

A

(A)`4//5`

B

(B)`5//4`

C

(C)`2//5`

D

(D)`5//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(2^{2 - \log_{2}(5)}\), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ 2^{2 - \log_{2}(5)} \] This can be rewritten using the properties of exponents: \[ 2^{2} \cdot 2^{-\log_{2}(5)} \] ### Step 2: Calculate \(2^{2}\) Now we calculate \(2^{2}\): \[ 2^{2} = 4 \] So, we can rewrite the expression as: \[ 4 \cdot 2^{-\log_{2}(5)} \] ### Step 3: Simplify \(2^{-\log_{2}(5)}\) Next, we simplify \(2^{-\log_{2}(5)}\). Using the property of logarithms, we know: \[ a^{-\log_{a}(x)} = \frac{1}{x} \] Thus, we have: \[ 2^{-\log_{2}(5)} = \frac{1}{5} \] ### Step 4: Combine the results Now we can substitute back into our expression: \[ 4 \cdot \frac{1}{5} = \frac{4}{5} \] ### Final Answer Thus, the value of \(2^{2 - \log_{2}(5)}\) is: \[ \frac{4}{5} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|24 Videos
  • LIMIT

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |43 Videos
  • MATRIX

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|91 Videos

Similar Questions

Explore conceptually related problems

If k^(log_(2)5)=16, find the value of k^((log_(2)5)^(2))

find the value of 2^(2+log_(2)3)

Find the value of 2^(2)+log_(2)^(3)

The value of 2^("log"3^(5)) - 5^("log"3^(2)) is

1.If log_(10)2=p ,then the value of log_(10)5 is

1.If log_(10)2=p ,then the value of log_(10)5 is

Find the Value of 2^(2+log_((1)/(2))) .

Let x,y and z be positive real numbers such that x^(log_(2)7)=8,y^(log_(3)5)=81 and z^(log_(5)216)=(5)^((1)/(3)) The value of (x(log_(2)7)^(2))+(y^(log_(3)5)^^2)+z^((log_(5)16)^(2)), is

PUNEET DOGRA-LOGARITHM-PREVIOUS YEAR QUESTIONS
  1. The value of 2^(2-log(2)^(5)) is

    Text Solution

    |

  2. If x^(log(7)x)gt7 where x gt 0. Then what is the domain of x ?

    Text Solution

    |

  3. If f(x) = log(10) (1 + x) than what is 4f (4) + 5f(1) - log(10)2 equal...

    Text Solution

    |

  4. f(x) = log(x) 10 is defined in the domain

    Text Solution

    |

  5. Find the value of sqrt(7sqrt(7sqrt(7sqrt(7sqrt(7sqrt(7))))))

    Text Solution

    |

  6. Compute log(9) 27 + log(8) 32

    Text Solution

    |

  7. If (0.2)^(x) = 2 and log(10) 2 = 0.3010, then what is the values of x ...

    Text Solution

    |

  8. If x + log(15) (1 + 3^(x))= x log(15) 5 + log(15) 12, where x is an in...

    Text Solution

    |

  9. If = (2017) ! Then what is (1)/(log(2)n)+(1)/(log(3)n) + (1)/(log(4...

    Text Solution

    |

  10. What is (1)/(log(2)N)+(1)/(log(3)N)+(1)/(log(4)N)+......(1)/(log(100)N...

    Text Solution

    |

  11. If x + log(10) (1 + 2^(x)) = x log(10) 5 + log(10)6 then x is equal to

    Text Solution

    |

  12. Find the value of 1/(log(3)e) + 1/(log(3)e^(2)) + 1/(log(3)e^(4))+………....

    Text Solution

    |

  13. It is given that the roots of the equaion x^(2) - 4x - log(3) P = 0 ar...

    Text Solution

    |

  14. Simplify:- 700 ÷ 70 ÷ 0.5 =?

    Text Solution

    |

  15. Simplify:- 55 ÷ 5.5 - 0.5 = ?

    Text Solution

    |

  16. Simplify:- (5*5*5*5*5*5)^4 * (5*5)^6 ÷ (5)^2 = (25)^?

    Text Solution

    |

  17. What is log(81) 243 equal to ?

    Text Solution

    |

  18. What is the value of 2 log(8) 2-(1)/(3) log(3) 9?

    Text Solution

    |

  19. If (log(x)x)(log(3)2x)(log(2x)y)=log(x^(x^(2)), then what is the val...

    Text Solution

    |

  20. What is the value of log(2) (log(3) 81) ?

    Text Solution

    |

  21. What is log(a+sqrt(a^(2)+1))+log((1)/(a+sqrt(a^(2)+1))) is equal to ?

    Text Solution

    |