Home
Class 14
MATHS
The value of 7 log (16)/(15) +5 log (25)...

The value of 7 log `(16)/(15) +5 log (25)/(24) + 3 log (81)/(80)` is :

A

0.3.10

B

0.3512

C

0.412

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 7 \log \left(\frac{16}{15}\right) + 5 \log \left(\frac{25}{24}\right) + 3 \log \left(\frac{81}{80}\right) \), we can use the properties of logarithms to simplify it step by step. ### Step 1: Combine the logarithmic expressions Using the property \( a \log m + b \log n = \log(m^a) + \log(n^b) = \log(m^a \cdot n^b) \), we can combine the logarithmic terms: \[ 7 \log \left(\frac{16}{15}\right) + 5 \log \left(\frac{25}{24}\right) + 3 \log \left(\frac{81}{80}\right) = \log \left( \left(\frac{16}{15}\right)^7 \cdot \left(\frac{25}{24}\right)^5 \cdot \left(\frac{81}{80}\right)^3 \right) \] ### Step 2: Calculate the powers Now we will calculate each term inside the logarithm: \[ \left(\frac{16}{15}\right)^7 = \frac{16^7}{15^7}, \quad \left(\frac{25}{24}\right)^5 = \frac{25^5}{24^5}, \quad \left(\frac{81}{80}\right)^3 = \frac{81^3}{80^3} \] ### Step 3: Substitute back into the logarithm Substituting these values back, we have: \[ \log \left( \frac{16^7 \cdot 25^5 \cdot 81^3}{15^7 \cdot 24^5 \cdot 80^3} \right) \] ### Step 4: Simplify the numerator and denominator Next, we can simplify the numerator and denominator: - \( 16 = 4^2 \) so \( 16^7 = (4^2)^7 = 4^{14} \) - \( 25 = 5^2 \) so \( 25^5 = (5^2)^5 = 5^{10} \) - \( 81 = 3^4 \) so \( 81^3 = (3^4)^3 = 3^{12} \) Thus, the numerator becomes: \[ 4^{14} \cdot 5^{10} \cdot 3^{12} \] For the denominator: - \( 15 = 3 \cdot 5 \) so \( 15^7 = (3 \cdot 5)^7 = 3^7 \cdot 5^7 \) - \( 24 = 3 \cdot 8 = 3 \cdot 2^3 \) so \( 24^5 = (3 \cdot 2^3)^5 = 3^5 \cdot 2^{15} \) - \( 80 = 16 \cdot 5 = 4^2 \cdot 5 \) so \( 80^3 = (4^2 \cdot 5)^3 = 4^6 \cdot 5^3 \) Thus, the denominator becomes: \[ 3^7 \cdot 5^7 \cdot 3^5 \cdot 2^{15} \cdot 4^6 \cdot 5^3 = 3^{12} \cdot 5^{10} \cdot 2^{15} \cdot 4^6 \] ### Step 5: Combine and simplify Now we can combine the numerator and denominator: \[ \log \left( \frac{4^{14} \cdot 5^{10} \cdot 3^{12}}{3^{12} \cdot 5^{10} \cdot 2^{15} \cdot 4^6} \right) \] This simplifies to: \[ \log \left( \frac{4^{14 - 6}}{2^{15}} \right) = \log \left( \frac{4^8}{2^{15}} \right) \] Since \( 4 = 2^2 \), we have: \[ \log \left( \frac{(2^2)^8}{2^{15}} \right) = \log \left( \frac{2^{16}}{2^{15}} \right) = \log(2) \] ### Final Answer Thus, the final value of the expression is: \[ \log(2) \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|24 Videos
  • LIMIT

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |43 Videos
  • MATRIX

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|91 Videos

Similar Questions

Explore conceptually related problems

Find the value of 7 log(16/15) + 5 log (25/24) + 3 log (81/80) .

The value of 7log((16)/(15))+5log((25)/(24))+3log((81)/(80))=

7 log (10)/(9) + 3 log""(81)/(80) =

The value of 7 log_(a) ""(16)/(15) + 5log_(a) ""(25)/(24) + 3 log_(a) ""(81)/(80) is

PUNEET DOGRA-LOGARITHM-PREVIOUS YEAR QUESTIONS
  1. The value of 7 log (16)/(15) +5 log (25)/(24) + 3 log (81)/(80) is :

    Text Solution

    |

  2. If x^(log(7)x)gt7 where x gt 0. Then what is the domain of x ?

    Text Solution

    |

  3. If f(x) = log(10) (1 + x) than what is 4f (4) + 5f(1) - log(10)2 equal...

    Text Solution

    |

  4. f(x) = log(x) 10 is defined in the domain

    Text Solution

    |

  5. Find the value of sqrt(7sqrt(7sqrt(7sqrt(7sqrt(7sqrt(7))))))

    Text Solution

    |

  6. Compute log(9) 27 + log(8) 32

    Text Solution

    |

  7. If (0.2)^(x) = 2 and log(10) 2 = 0.3010, then what is the values of x ...

    Text Solution

    |

  8. If x + log(15) (1 + 3^(x))= x log(15) 5 + log(15) 12, where x is an in...

    Text Solution

    |

  9. If = (2017) ! Then what is (1)/(log(2)n)+(1)/(log(3)n) + (1)/(log(4...

    Text Solution

    |

  10. What is (1)/(log(2)N)+(1)/(log(3)N)+(1)/(log(4)N)+......(1)/(log(100)N...

    Text Solution

    |

  11. If x + log(10) (1 + 2^(x)) = x log(10) 5 + log(10)6 then x is equal to

    Text Solution

    |

  12. Find the value of 1/(log(3)e) + 1/(log(3)e^(2)) + 1/(log(3)e^(4))+………....

    Text Solution

    |

  13. It is given that the roots of the equaion x^(2) - 4x - log(3) P = 0 ar...

    Text Solution

    |

  14. Simplify:- 700 ÷ 70 ÷ 0.5 =?

    Text Solution

    |

  15. Simplify:- 55 ÷ 5.5 - 0.5 = ?

    Text Solution

    |

  16. Simplify:- (5*5*5*5*5*5)^4 * (5*5)^6 ÷ (5)^2 = (25)^?

    Text Solution

    |

  17. What is log(81) 243 equal to ?

    Text Solution

    |

  18. What is the value of 2 log(8) 2-(1)/(3) log(3) 9?

    Text Solution

    |

  19. If (log(x)x)(log(3)2x)(log(2x)y)=log(x^(x^(2)), then what is the val...

    Text Solution

    |

  20. What is the value of log(2) (log(3) 81) ?

    Text Solution

    |

  21. What is log(a+sqrt(a^(2)+1))+log((1)/(a+sqrt(a^(2)+1))) is equal to ?

    Text Solution

    |