Home
Class 14
MATHS
log(25) 625 - log(31) 961 + log(29) 841 ...

`log_(25) 625 - log_(31) 961 + log_(29) 841 = ?`

A

2

B

6

C

0

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \log_{25} 625 - \log_{31} 961 + \log_{29} 841 \), we will use properties of logarithms. ### Step 1: Rewrite the logarithms using exponentiation We can express the numbers in terms of their bases raised to powers: - \( 625 = 25^2 \) - \( 961 = 31^2 \) - \( 841 = 29^2 \) Thus, we can rewrite the expression as: \[ \log_{25}(25^2) - \log_{31}(31^2) + \log_{29}(29^2) \] ### Step 2: Apply the power rule of logarithms Using the power rule of logarithms, which states that \( \log_a(b^n) = n \cdot \log_a(b) \), we can simplify each term: \[ \log_{25}(25^2) = 2 \cdot \log_{25}(25) \] \[ \log_{31}(31^2) = 2 \cdot \log_{31}(31) \] \[ \log_{29}(29^2) = 2 \cdot \log_{29}(29) \] ### Step 3: Substitute the simplified terms back into the expression Now substituting back, we have: \[ 2 \cdot \log_{25}(25) - 2 \cdot \log_{31}(31) + 2 \cdot \log_{29}(29) \] ### Step 4: Evaluate the logarithms Since \( \log_a(a) = 1 \) for any base \( a \): \[ \log_{25}(25) = 1, \quad \log_{31}(31) = 1, \quad \log_{29}(29) = 1 \] Substituting these values gives: \[ 2 \cdot 1 - 2 \cdot 1 + 2 \cdot 1 \] ### Step 5: Simplify the expression Now simplifying: \[ 2 - 2 + 2 = 2 \] ### Final Answer Thus, the final answer is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|24 Videos
  • LIMIT

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |43 Videos
  • MATRIX

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|91 Videos

Similar Questions

Explore conceptually related problems

log_(5)25

Solve (log_(3)x)(log_(5)9)- log_x 25 + log_(3) 2 = log_(3) 54 .

(log_(3)5)*(log_(25)27)

(log_(5)8)/(log_(25) 16 xx log_(100)10)

The value of (log_(3) 5 xx log_(25) 27 xx log_(49) 7)/(log_(81)3) is

if 2^(log_(3)9) + 25 log_(9)3 = 8 log_(x)9 then x= _______

Simplify: 3log_(3)5 + log_(3)10 - log_(3)625 .

The product of all values of x which make the following statement true (log_(3)x) (log_(5)9)-log_(x)25 +log_(3)2 = log_(3)54 , is

PUNEET DOGRA-LOGARITHM-PREVIOUS YEAR QUESTIONS
  1. log(25) 625 - log(31) 961 + log(29) 841 = ?

    Text Solution

    |

  2. If x^(log(7)x)gt7 where x gt 0. Then what is the domain of x ?

    Text Solution

    |

  3. If f(x) = log(10) (1 + x) than what is 4f (4) + 5f(1) - log(10)2 equal...

    Text Solution

    |

  4. f(x) = log(x) 10 is defined in the domain

    Text Solution

    |

  5. Find the value of sqrt(7sqrt(7sqrt(7sqrt(7sqrt(7sqrt(7))))))

    Text Solution

    |

  6. Compute log(9) 27 + log(8) 32

    Text Solution

    |

  7. If (0.2)^(x) = 2 and log(10) 2 = 0.3010, then what is the values of x ...

    Text Solution

    |

  8. If x + log(15) (1 + 3^(x))= x log(15) 5 + log(15) 12, where x is an in...

    Text Solution

    |

  9. If = (2017) ! Then what is (1)/(log(2)n)+(1)/(log(3)n) + (1)/(log(4...

    Text Solution

    |

  10. What is (1)/(log(2)N)+(1)/(log(3)N)+(1)/(log(4)N)+......(1)/(log(100)N...

    Text Solution

    |

  11. If x + log(10) (1 + 2^(x)) = x log(10) 5 + log(10)6 then x is equal to

    Text Solution

    |

  12. Find the value of 1/(log(3)e) + 1/(log(3)e^(2)) + 1/(log(3)e^(4))+………....

    Text Solution

    |

  13. It is given that the roots of the equaion x^(2) - 4x - log(3) P = 0 ar...

    Text Solution

    |

  14. Simplify:- 700 ÷ 70 ÷ 0.5 =?

    Text Solution

    |

  15. Simplify:- 55 ÷ 5.5 - 0.5 = ?

    Text Solution

    |

  16. Simplify:- (5*5*5*5*5*5)^4 * (5*5)^6 ÷ (5)^2 = (25)^?

    Text Solution

    |

  17. What is log(81) 243 equal to ?

    Text Solution

    |

  18. What is the value of 2 log(8) 2-(1)/(3) log(3) 9?

    Text Solution

    |

  19. If (log(x)x)(log(3)2x)(log(2x)y)=log(x^(x^(2)), then what is the val...

    Text Solution

    |

  20. What is the value of log(2) (log(3) 81) ?

    Text Solution

    |

  21. What is log(a+sqrt(a^(2)+1))+log((1)/(a+sqrt(a^(2)+1))) is equal to ?

    Text Solution

    |