Home
Class 14
MATHS
If f(x) = log(10) (1 + x) than what is 4...

If f(x) = `log_(10) (1 + x)` than what is 4f (4) + 5f(1) - `log_(10)2` equal to ?

A

0

B

1

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the function given: **Step 1: Define the function and find f(4) and f(1)** The function is defined as: \[ f(x) = \log_{10}(1 + x) \] Now, we need to find \( f(4) \) and \( f(1) \). - For \( f(4) \): \[ f(4) = \log_{10}(1 + 4) = \log_{10}(5) \] - For \( f(1) \): \[ f(1) = \log_{10}(1 + 1) = \log_{10}(2) \] **Step 2: Substitute \( f(4) \) and \( f(1) \) into the expression** We need to evaluate: \[ 4f(4) + 5f(1) - \log_{10}(2) \] Substituting the values we found: \[ 4f(4) = 4 \cdot \log_{10}(5) = \log_{10}(5^4) = \log_{10}(625) \] \[ 5f(1) = 5 \cdot \log_{10}(2) = \log_{10}(2^5) = \log_{10}(32) \] Now, substituting these into the expression: \[ \log_{10}(625) + \log_{10}(32) - \log_{10}(2) \] **Step 3: Use logarithm properties to combine the logs** Using the property of logarithms that states \( \log_a(b) + \log_a(c) = \log_a(b \cdot c) \): \[ \log_{10}(625) + \log_{10}(32) = \log_{10}(625 \cdot 32) \] Now, we can simplify: \[ 625 \cdot 32 = 20000 \] So, we have: \[ \log_{10}(20000) - \log_{10}(2) \] Using the property \( \log_a(b) - \log_a(c) = \log_a\left(\frac{b}{c}\right) \): \[ \log_{10}\left(\frac{20000}{2}\right) = \log_{10}(10000) \] **Step 4: Simplify further** Since \( 10000 = 10^4 \): \[ \log_{10}(10000) = \log_{10}(10^4) = 4 \] Thus, the final answer is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|24 Videos
  • LIMIT

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |43 Videos
  • MATRIX

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|91 Videos

Similar Questions

Explore conceptually related problems

If f(x)=log_(10)(1+x)," then what is "4f(4)+5f(1)-log_(10)2 equal to ?

If f(x)=|log_(10)x| then at x=1

f(x)=log_(3)(5+4x-x^(2))

If f(x)=log_(a)(log_(a)x) then f'(x) is equal to

if f(x)=log_(5)log_(3)x then f'(e) is equal to

If f(x) = log_(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to :

PUNEET DOGRA-LOGARITHM-PREVIOUS YEAR QUESTIONS
  1. If x^(log(7)x)gt7 where x gt 0. Then what is the domain of x ?

    Text Solution

    |

  2. If f(x) = log(10) (1 + x) than what is 4f (4) + 5f(1) - log(10)2 equal...

    Text Solution

    |

  3. f(x) = log(x) 10 is defined in the domain

    Text Solution

    |

  4. Find the value of sqrt(7sqrt(7sqrt(7sqrt(7sqrt(7sqrt(7))))))

    Text Solution

    |

  5. Compute log(9) 27 + log(8) 32

    Text Solution

    |

  6. If (0.2)^(x) = 2 and log(10) 2 = 0.3010, then what is the values of x ...

    Text Solution

    |

  7. If x + log(15) (1 + 3^(x))= x log(15) 5 + log(15) 12, where x is an in...

    Text Solution

    |

  8. If = (2017) ! Then what is (1)/(log(2)n)+(1)/(log(3)n) + (1)/(log(4...

    Text Solution

    |

  9. What is (1)/(log(2)N)+(1)/(log(3)N)+(1)/(log(4)N)+......(1)/(log(100)N...

    Text Solution

    |

  10. If x + log(10) (1 + 2^(x)) = x log(10) 5 + log(10)6 then x is equal to

    Text Solution

    |

  11. Find the value of 1/(log(3)e) + 1/(log(3)e^(2)) + 1/(log(3)e^(4))+………....

    Text Solution

    |

  12. It is given that the roots of the equaion x^(2) - 4x - log(3) P = 0 ar...

    Text Solution

    |

  13. Simplify:- 700 ÷ 70 ÷ 0.5 =?

    Text Solution

    |

  14. Simplify:- 55 ÷ 5.5 - 0.5 = ?

    Text Solution

    |

  15. Simplify:- (5*5*5*5*5*5)^4 * (5*5)^6 ÷ (5)^2 = (25)^?

    Text Solution

    |

  16. What is log(81) 243 equal to ?

    Text Solution

    |

  17. What is the value of 2 log(8) 2-(1)/(3) log(3) 9?

    Text Solution

    |

  18. If (log(x)x)(log(3)2x)(log(2x)y)=log(x^(x^(2)), then what is the val...

    Text Solution

    |

  19. What is the value of log(2) (log(3) 81) ?

    Text Solution

    |

  20. What is log(a+sqrt(a^(2)+1))+log((1)/(a+sqrt(a^(2)+1))) is equal to ?

    Text Solution

    |