Home
Class 14
MATHS
If x + log(15) (1 + 3^(x))= x log(15) 5 ...

If x + `log_(15) (1 + 3^(x))= x log_(15) 5 + log_(15) 12`, where x is an integer. Then what is x equal to ?

A

-3

B

2

C

1

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x + \log_{15}(1 + 3^x) = x \log_{15}(5) + \log_{15}(12) \), we will follow these steps: ### Step 1: Rewrite the equation The given equation is: \[ x + \log_{15}(1 + 3^x) = x \log_{15}(5) + \log_{15}(12) \] ### Step 2: Use logarithmic properties We can rewrite \( x \) as \( \log_{15}(15^x) \) because \( \log_{a}(a^b) = b \): \[ \log_{15}(15^x) + \log_{15}(1 + 3^x) = x \log_{15}(5) + \log_{15}(12) \] ### Step 3: Combine the logarithms on the left side Using the property \( \log_{a}(m) + \log_{a}(n) = \log_{a}(mn) \): \[ \log_{15}(15^x (1 + 3^x)) = x \log_{15}(5) + \log_{15}(12) \] ### Step 4: Rewrite the right side We can also combine the right side using the same logarithmic property: \[ \log_{15}(15^x (1 + 3^x)) = \log_{15}(5^x \cdot 12) \] ### Step 5: Set the arguments equal Since the logarithms are equal, we can set the arguments equal to each other: \[ 15^x (1 + 3^x) = 5^x \cdot 12 \] ### Step 6: Rearrange the equation Rearranging gives us: \[ 15^x + 15^x \cdot 3^x = 5^x \cdot 12 \] ### Step 7: Factor out common terms Notice that \( 15^x = (3 \cdot 5)^x = 3^x \cdot 5^x \): \[ 3^x \cdot 5^x + 3^x \cdot 5^x \cdot 3^x = 5^x \cdot 12 \] \[ 3^x \cdot 5^x (1 + 3^x) = 5^x \cdot 12 \] ### Step 8: Divide both sides by \( 5^x \) Assuming \( 5^x \neq 0 \): \[ 3^x (1 + 3^x) = 12 \] ### Step 9: Let \( y = 3^x \) Substituting \( y = 3^x \) gives us: \[ y(1 + y) = 12 \] \[ y^2 + y - 12 = 0 \] ### Step 10: Solve the quadratic equation Using the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ y = \frac{-1 \pm \sqrt{1 + 48}}{2} = \frac{-1 \pm 7}{2} \] This gives us: \[ y = 3 \quad \text{or} \quad y = -4 \] Since \( y = 3^x \) must be positive, we take \( y = 3 \): \[ 3^x = 3 \implies x = 1 \] ### Conclusion Thus, the value of \( x \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|24 Videos
  • LIMIT

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |43 Videos
  • MATRIX

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|91 Videos

Similar Questions

Explore conceptually related problems

If x+log_(15)(1+3^(x))=xlog_(15)5+log_(15)12 , where x is an integer, then what is x equal to?

If log_(10) 2, log_(10)(2^(x) -1) , log_(10)(2^(x)+3) are in AP, then what is x equal to?

If x>1 and log_(2)x,log_(3)x,log_(x)16 are in GP, then what is x equal to ?

If x= log_(5)3 and y = log_(5)8 then log_(5)24 in terms of x,y is equal to _______

If log_(5)[log_(3)(log_(2)x)]=1 then x is

If log_(5)[log_(3)(log_(2)x)]=1 , then x is:

If log_(5) log_(5) log_(3) x = 0 , then value of x is

If log_(2)[log_(3)(log_(2)x)]=1 , then x is equal to

PUNEET DOGRA-LOGARITHM-PREVIOUS YEAR QUESTIONS
  1. Compute log(9) 27 + log(8) 32

    Text Solution

    |

  2. If (0.2)^(x) = 2 and log(10) 2 = 0.3010, then what is the values of x ...

    Text Solution

    |

  3. If x + log(15) (1 + 3^(x))= x log(15) 5 + log(15) 12, where x is an in...

    Text Solution

    |

  4. If = (2017) ! Then what is (1)/(log(2)n)+(1)/(log(3)n) + (1)/(log(4...

    Text Solution

    |

  5. What is (1)/(log(2)N)+(1)/(log(3)N)+(1)/(log(4)N)+......(1)/(log(100)N...

    Text Solution

    |

  6. If x + log(10) (1 + 2^(x)) = x log(10) 5 + log(10)6 then x is equal to

    Text Solution

    |

  7. Find the value of 1/(log(3)e) + 1/(log(3)e^(2)) + 1/(log(3)e^(4))+………....

    Text Solution

    |

  8. It is given that the roots of the equaion x^(2) - 4x - log(3) P = 0 ar...

    Text Solution

    |

  9. Simplify:- 700 ÷ 70 ÷ 0.5 =?

    Text Solution

    |

  10. Simplify:- 55 ÷ 5.5 - 0.5 = ?

    Text Solution

    |

  11. Simplify:- (5*5*5*5*5*5)^4 * (5*5)^6 ÷ (5)^2 = (25)^?

    Text Solution

    |

  12. What is log(81) 243 equal to ?

    Text Solution

    |

  13. What is the value of 2 log(8) 2-(1)/(3) log(3) 9?

    Text Solution

    |

  14. If (log(x)x)(log(3)2x)(log(2x)y)=log(x^(x^(2)), then what is the val...

    Text Solution

    |

  15. What is the value of log(2) (log(3) 81) ?

    Text Solution

    |

  16. What is log(a+sqrt(a^(2)+1))+log((1)/(a+sqrt(a^(2)+1))) is equal to ?

    Text Solution

    |

  17. What is the value of log(10)(9/8)-log(10)((27)/(32))+log(10)(3/4) ?

    Text Solution

    |

  18. If log(10)2,log(10)(2^(x)-1) and log(10)(2^(x)+3) are three consecutiv...

    Text Solution

    |

  19. If log(3)[log(3)[log(3)x]]=log(3)3, then what is the value of x ?

    Text Solution

    |

  20. What is the value of (log " "(sqrt(alphabeta))H)/(log " "(sqrt(alpha ...

    Text Solution

    |