Home
Class 14
MATHS
What is (1)/(log(2)N)+(1)/(log(3)N)+(1)/...

What is `(1)/(log_(2)N)+(1)/(log_(3)N)+(1)/(log_(4)N)+......(1)/(log_(100)N)` equal to :

A

`(1)/(log_(100!)N)`

B

`(1)/(log_(99)N)`

C

`(99)/(log_(100t)N)`

D

`(99)/(log_(99)N)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{1}{\log_2 N} + \frac{1}{\log_3 N} + \frac{1}{\log_4 N} + \ldots + \frac{1}{\log_{100} N}, \] we can use the change of base formula for logarithms. The change of base formula states that \[ \log_a b = \frac{\log_c b}{\log_c a} \] for any positive base \( c \). We will use this property to rewrite each term in the series. ### Step 1: Rewrite each term using the change of base formula We can rewrite each term as follows: \[ \frac{1}{\log_k N} = \frac{1}{\frac{\log N}{\log k}} = \frac{\log k}{\log N}. \] Thus, the entire sum becomes: \[ \sum_{k=2}^{100} \frac{1}{\log_k N} = \sum_{k=2}^{100} \frac{\log k}{\log N}. \] ### Step 2: Factor out \(\frac{1}{\log N}\) Since \(\frac{1}{\log N}\) is a common factor in all terms, we can factor it out: \[ \sum_{k=2}^{100} \frac{\log k}{\log N} = \frac{1}{\log N} \sum_{k=2}^{100} \log k. \] ### Step 3: Simplify the sum of logarithms The sum \(\sum_{k=2}^{100} \log k\) can be simplified using the property of logarithms that states \(\log a + \log b = \log(ab)\). Therefore, we have: \[ \sum_{k=2}^{100} \log k = \log(2 \cdot 3 \cdot 4 \cdots \cdot 100). \] This product can be expressed as \(100!\) (100 factorial): \[ \sum_{k=2}^{100} \log k = \log(100!). \] ### Step 4: Combine the results Now substituting back, we get: \[ \frac{1}{\log N} \sum_{k=2}^{100} \log k = \frac{\log(100!)}{\log N}. \] ### Final Result Thus, the final expression for the original series is: \[ \frac{\log(100!)}{\log N}. \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|24 Videos
  • LIMIT

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |43 Videos
  • MATRIX

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|91 Videos

Similar Questions

Explore conceptually related problems

If n=(2017)! , then what is (1)/(log_(2)n)+(1)/(log_(3)n)+(1)/(log_(4)n)+....+(1)/(log_(2017)n) equal to?

(1)/(log_(2)(n))+(1)/(log_(3)(n))+(1)/(log_(4)(n))+....+(1)/(log_(43)(n))

(1)/(log_(2)(n))+(1)/(log_(3)(n))+(1)/(log_(4)(n))+....+(1)/(log_(43)(n))

If n=|__2002, evaluate (1)/(log_(2)n)+(1)/(log_(3)n)+(1)/(log_(4)n)+......+(1)/(log_(2002)n)

(1)/(log_(2)N)+(1)/(log_(3)N)+(1)/(nog_(4)N)+...+(1)/(log_(2011)N)=(1)/(log_(2011)N)

In n = 10!, then what is the value of the following? (1)/(log_(2)n) +(1)/(log_(3)n) +(1)/(log_(4)n)+…..+ (1)/(log_(10)n)

the sum of the series (1)/(log_(2)4)+(1)/(log_(4)4)+(1)/(log_(8)4)+.........+(1)/(log_(2)^(n)4)

What is the value of (1)/(log_(2)n)+(1)/(log_(3)n)+ . . .+(1)/(log_(40)n) ?

PUNEET DOGRA-LOGARITHM-PREVIOUS YEAR QUESTIONS
  1. Compute log(9) 27 + log(8) 32

    Text Solution

    |

  2. If (0.2)^(x) = 2 and log(10) 2 = 0.3010, then what is the values of x ...

    Text Solution

    |

  3. If x + log(15) (1 + 3^(x))= x log(15) 5 + log(15) 12, where x is an in...

    Text Solution

    |

  4. If = (2017) ! Then what is (1)/(log(2)n)+(1)/(log(3)n) + (1)/(log(4...

    Text Solution

    |

  5. What is (1)/(log(2)N)+(1)/(log(3)N)+(1)/(log(4)N)+......(1)/(log(100)N...

    Text Solution

    |

  6. If x + log(10) (1 + 2^(x)) = x log(10) 5 + log(10)6 then x is equal to

    Text Solution

    |

  7. Find the value of 1/(log(3)e) + 1/(log(3)e^(2)) + 1/(log(3)e^(4))+………....

    Text Solution

    |

  8. It is given that the roots of the equaion x^(2) - 4x - log(3) P = 0 ar...

    Text Solution

    |

  9. Simplify:- 700 ÷ 70 ÷ 0.5 =?

    Text Solution

    |

  10. Simplify:- 55 ÷ 5.5 - 0.5 = ?

    Text Solution

    |

  11. Simplify:- (5*5*5*5*5*5)^4 * (5*5)^6 ÷ (5)^2 = (25)^?

    Text Solution

    |

  12. What is log(81) 243 equal to ?

    Text Solution

    |

  13. What is the value of 2 log(8) 2-(1)/(3) log(3) 9?

    Text Solution

    |

  14. If (log(x)x)(log(3)2x)(log(2x)y)=log(x^(x^(2)), then what is the val...

    Text Solution

    |

  15. What is the value of log(2) (log(3) 81) ?

    Text Solution

    |

  16. What is log(a+sqrt(a^(2)+1))+log((1)/(a+sqrt(a^(2)+1))) is equal to ?

    Text Solution

    |

  17. What is the value of log(10)(9/8)-log(10)((27)/(32))+log(10)(3/4) ?

    Text Solution

    |

  18. If log(10)2,log(10)(2^(x)-1) and log(10)(2^(x)+3) are three consecutiv...

    Text Solution

    |

  19. If log(3)[log(3)[log(3)x]]=log(3)3, then what is the value of x ?

    Text Solution

    |

  20. What is the value of (log " "(sqrt(alphabeta))H)/(log " "(sqrt(alpha ...

    Text Solution

    |