Home
Class 14
MATHS
If x + log(10) (1 + 2^(x)) = x log(10) 5...

If x + `log_(10) (1 + 2^(x)) = x log_(10) 5 + log_(10)`6 then x is equal to

A

2,-3

B

2 only

C

1

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x + \log_{10}(1 + 2^x) = x \log_{10} 5 + \log_{10} 6 \), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ x + \log_{10}(1 + 2^x) = x \log_{10} 5 + \log_{10} 6 \] ### Step 2: Combine logarithms We can express \( x \log_{10} 5 + \log_{10} 6 \) as: \[ \log_{10}(5^x) + \log_{10}(6) = \log_{10}(5^x \cdot 6) \] Thus, we rewrite the equation: \[ x + \log_{10}(1 + 2^x) = \log_{10}(5^x \cdot 6) \] ### Step 3: Isolate the logarithmic term Subtract \( x \) from both sides: \[ \log_{10}(1 + 2^x) = \log_{10}(5^x \cdot 6) - x \] ### Step 4: Rewrite \( x \) as a logarithm We can express \( x \) as \( \log_{10}(10^x) \): \[ \log_{10}(1 + 2^x) = \log_{10}(5^x \cdot 6) - \log_{10}(10^x) \] Using the property of logarithms, we can combine the right side: \[ \log_{10}(1 + 2^x) = \log_{10}\left(\frac{5^x \cdot 6}{10^x}\right) \] ### Step 5: Simplify the argument of the logarithm This simplifies to: \[ \log_{10}(1 + 2^x) = \log_{10}\left(6 \cdot \left(\frac{5}{10}\right)^x\right) \] Since \(\frac{5}{10} = 0.5\), we have: \[ \log_{10}(1 + 2^x) = \log_{10}(6 \cdot 0.5^x) \] ### Step 6: Set the arguments equal Since the logarithms are equal, we can set the arguments equal: \[ 1 + 2^x = 6 \cdot 0.5^x \] ### Step 7: Rewrite \( 0.5^x \) Recall that \( 0.5^x = \frac{1}{2^x} \), so we can rewrite the equation: \[ 1 + 2^x = \frac{6}{2^x} \] ### Step 8: Multiply through by \( 2^x \) To eliminate the fraction, multiply both sides by \( 2^x \): \[ 2^x + (2^x)^2 = 6 \] This simplifies to: \[ (2^x)^2 + 2^x - 6 = 0 \] ### Step 9: Let \( y = 2^x \) Let \( y = 2^x \), then we have a quadratic equation: \[ y^2 + y - 6 = 0 \] ### Step 10: Factor the quadratic Factoring gives: \[ (y - 2)(y + 3) = 0 \] Thus, \( y = 2 \) or \( y = -3 \). Since \( y = 2^x \) must be positive, we discard \( y = -3 \). ### Step 11: Solve for \( x \) Setting \( y = 2 \): \[ 2^x = 2 \implies x = 1 \] ### Final Answer Thus, the solution is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|24 Videos
  • LIMIT

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |43 Videos
  • MATRIX

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|91 Videos

Similar Questions

Explore conceptually related problems

If x + log_(10) ( 1 + 2^(x)) = x log_(10) 5 + log_(10)6, then the value of x is

If x+log_(10)(1+2^(x))=xlog_(10)5+log_(10)6 then x is equal to

Solve for x:x+(log)_(10)(1+2^(x))=x log_(10)5+log_(10)6

If log_(10)5+log_(10)(5x+1)=log_(10)(x+5)+1, then x is equal to

log_(10)^(2) x + log_(10) x^(2) = log_(10)^(2) 2 - 1

If 3 log_(10) (x^(2) y) = 4 + 2 log_(10) x - log_(10) y , where x and y are both + ve, and x - y = 2 sqrt(6) , then the value of x is

If (1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n terms") = (20)/(7 " log"_(10)x) and n = log_(10)x + log_(10) x^((1)/(2)) + log_(10) x^((1)/(4)) + log_(10) x^((1)/(8)) + ... + oo , then x is equal to

If log_(10) 2, log_(10)(2^(x) -1) , log_(10)(2^(x)+3) are in AP, then what is x equal to?

If (1+3+5+...+ nterms )/(4+7+10+... nterms )=(20)/(7log_(10)x) and n=log_(10)x+log_(10)x^((1)/(2))+.......oo then x is equal to

PUNEET DOGRA-LOGARITHM-PREVIOUS YEAR QUESTIONS
  1. Compute log(9) 27 + log(8) 32

    Text Solution

    |

  2. If (0.2)^(x) = 2 and log(10) 2 = 0.3010, then what is the values of x ...

    Text Solution

    |

  3. If x + log(15) (1 + 3^(x))= x log(15) 5 + log(15) 12, where x is an in...

    Text Solution

    |

  4. If = (2017) ! Then what is (1)/(log(2)n)+(1)/(log(3)n) + (1)/(log(4...

    Text Solution

    |

  5. What is (1)/(log(2)N)+(1)/(log(3)N)+(1)/(log(4)N)+......(1)/(log(100)N...

    Text Solution

    |

  6. If x + log(10) (1 + 2^(x)) = x log(10) 5 + log(10)6 then x is equal to

    Text Solution

    |

  7. Find the value of 1/(log(3)e) + 1/(log(3)e^(2)) + 1/(log(3)e^(4))+………....

    Text Solution

    |

  8. It is given that the roots of the equaion x^(2) - 4x - log(3) P = 0 ar...

    Text Solution

    |

  9. Simplify:- 700 ÷ 70 ÷ 0.5 =?

    Text Solution

    |

  10. Simplify:- 55 ÷ 5.5 - 0.5 = ?

    Text Solution

    |

  11. Simplify:- (5*5*5*5*5*5)^4 * (5*5)^6 ÷ (5)^2 = (25)^?

    Text Solution

    |

  12. What is log(81) 243 equal to ?

    Text Solution

    |

  13. What is the value of 2 log(8) 2-(1)/(3) log(3) 9?

    Text Solution

    |

  14. If (log(x)x)(log(3)2x)(log(2x)y)=log(x^(x^(2)), then what is the val...

    Text Solution

    |

  15. What is the value of log(2) (log(3) 81) ?

    Text Solution

    |

  16. What is log(a+sqrt(a^(2)+1))+log((1)/(a+sqrt(a^(2)+1))) is equal to ?

    Text Solution

    |

  17. What is the value of log(10)(9/8)-log(10)((27)/(32))+log(10)(3/4) ?

    Text Solution

    |

  18. If log(10)2,log(10)(2^(x)-1) and log(10)(2^(x)+3) are three consecutiv...

    Text Solution

    |

  19. If log(3)[log(3)[log(3)x]]=log(3)3, then what is the value of x ?

    Text Solution

    |

  20. What is the value of (log " "(sqrt(alphabeta))H)/(log " "(sqrt(alpha ...

    Text Solution

    |