Home
Class 14
MATHS
What is the value of (log " "(sqrt(alph...

What is the value of `(log " "_(sqrt(alphabeta))H)/(log " "_(sqrt(alpha beta gamma))H)` ?

A

`log_(alphabeta)(alpha)`

B

`log_(alphabetagamma)(alphabeta)`

C

`log_(alphabeta)(alphabetagamma)`

D

`log_(alphabeta)(beta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ \frac{\log_{\sqrt{\alpha \beta}} H}{\log_{\sqrt{\alpha \beta \gamma}} H} \] ### Step 1: Apply the Change of Base Formula Using the change of base formula for logarithms, we can rewrite the expression as: \[ \frac{\log H / \log \sqrt{\alpha \beta}}{\log H / \log \sqrt{\alpha \beta \gamma}} \] ### Step 2: Simplify the Expression This simplifies to: \[ \frac{\log H}{\log \sqrt{\alpha \beta}} \cdot \frac{\log \sqrt{\alpha \beta \gamma}}{\log H} \] The \(\log H\) terms cancel out, leaving us with: \[ \frac{\log \sqrt{\alpha \beta \gamma}}{\log \sqrt{\alpha \beta}} \] ### Step 3: Use the Property of Logarithms Now, we can use the property of logarithms that states \(\log a^b = b \cdot \log a\). Thus, we can rewrite the logarithms: \[ \frac{\frac{1}{2} \log (\alpha \beta \gamma)}{\frac{1}{2} \log (\alpha \beta)} \] ### Step 4: Cancel Out the Common Factor The \(\frac{1}{2}\) cancels out: \[ \frac{\log (\alpha \beta \gamma)}{\log (\alpha \beta)} \] ### Step 5: Apply the Logarithm Property Using the property of logarithms that states \(\log a - \log b = \log \frac{a}{b}\), we can express this as: \[ \log_{\alpha \beta} (\alpha \beta \gamma) \] ### Final Result Thus, the final value of the expression is: \[ \log_{\alpha \beta} (\alpha \beta \gamma) \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|24 Videos
  • LIMIT

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |43 Videos
  • MATRIX

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|91 Videos

Similar Questions

Explore conceptually related problems

What is the value of (log_sqrt(alphabeta)(H))/(log_sqrt(alphabetagamma)(H)) ?

What is the value of (log_(sqrt(alphabeta))(H))/(log_(alphabeta)(beta))

the value of log_(3)(log_(2)(log_(sqrt(3))81))

If alpha and beta are solutions of the equation 4log_(3)^(2)x-4log_(3)x^(2)+1=0 then the value of |(sqrt(alpha beta)+1)/(sqrt(alpha beta)-1)| is

Find the value of (log sqrt(27)+log8-log sqrt(1000))/(log(1.2))

Determine the value of log_4 {log_sqrt2(log_3 81)}

PUNEET DOGRA-LOGARITHM-PREVIOUS YEAR QUESTIONS
  1. Compute log(9) 27 + log(8) 32

    Text Solution

    |

  2. If (0.2)^(x) = 2 and log(10) 2 = 0.3010, then what is the values of x ...

    Text Solution

    |

  3. If x + log(15) (1 + 3^(x))= x log(15) 5 + log(15) 12, where x is an in...

    Text Solution

    |

  4. If = (2017) ! Then what is (1)/(log(2)n)+(1)/(log(3)n) + (1)/(log(4...

    Text Solution

    |

  5. What is (1)/(log(2)N)+(1)/(log(3)N)+(1)/(log(4)N)+......(1)/(log(100)N...

    Text Solution

    |

  6. If x + log(10) (1 + 2^(x)) = x log(10) 5 + log(10)6 then x is equal to

    Text Solution

    |

  7. Find the value of 1/(log(3)e) + 1/(log(3)e^(2)) + 1/(log(3)e^(4))+………....

    Text Solution

    |

  8. It is given that the roots of the equaion x^(2) - 4x - log(3) P = 0 ar...

    Text Solution

    |

  9. Simplify:- 700 ÷ 70 ÷ 0.5 =?

    Text Solution

    |

  10. Simplify:- 55 ÷ 5.5 - 0.5 = ?

    Text Solution

    |

  11. Simplify:- (5*5*5*5*5*5)^4 * (5*5)^6 ÷ (5)^2 = (25)^?

    Text Solution

    |

  12. What is log(81) 243 equal to ?

    Text Solution

    |

  13. What is the value of 2 log(8) 2-(1)/(3) log(3) 9?

    Text Solution

    |

  14. If (log(x)x)(log(3)2x)(log(2x)y)=log(x^(x^(2)), then what is the val...

    Text Solution

    |

  15. What is the value of log(2) (log(3) 81) ?

    Text Solution

    |

  16. What is log(a+sqrt(a^(2)+1))+log((1)/(a+sqrt(a^(2)+1))) is equal to ?

    Text Solution

    |

  17. What is the value of log(10)(9/8)-log(10)((27)/(32))+log(10)(3/4) ?

    Text Solution

    |

  18. If log(10)2,log(10)(2^(x)-1) and log(10)(2^(x)+3) are three consecutiv...

    Text Solution

    |

  19. If log(3)[log(3)[log(3)x]]=log(3)3, then what is the value of x ?

    Text Solution

    |

  20. What is the value of (log " "(sqrt(alphabeta))H)/(log " "(sqrt(alpha ...

    Text Solution

    |