Home
Class 14
MATHS
Consider the expansion of ( 1+ x)^(2n+1)...

Consider the expansion of `( 1+ x)^(2n+1)`
What is `""^(47)C_(4) + ""^(51)C_(3)+sum_(n=2)^(5)""^(52-n)C_(3)` equal to ?

A

`""^(52)C_(4)`

B

`""^(51)C_(5)`

C

`""^(53)C_(4)`

D

`""^(52)C_(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( \binom{47}{4} + \binom{51}{3} + \sum_{n=2}^{5} \binom{52-n}{3} \). ### Step-by-Step Solution: 1. **Evaluate \( \binom{47}{4} \)**: - This is a straightforward binomial coefficient calculation. It represents the number of ways to choose 4 items from 47. - \( \binom{47}{4} = \frac{47!}{4!(47-4)!} \) 2. **Evaluate \( \binom{51}{3} \)**: - Similarly, calculate the binomial coefficient for choosing 3 items from 51. - \( \binom{51}{3} = \frac{51!}{3!(51-3)!} \) 3. **Evaluate the summation \( \sum_{n=2}^{5} \binom{52-n}{3} \)**: - We will compute the individual terms of the summation: - For \( n=2 \): \( \binom{52-2}{3} = \binom{50}{3} \) - For \( n=3 \): \( \binom{52-3}{3} = \binom{49}{3} \) - For \( n=4 \): \( \binom{52-4}{3} = \binom{48}{3} \) - For \( n=5 \): \( \binom{52-5}{3} = \binom{47}{3} \) 4. **Combine the results**: - Now we can write the summation explicitly: \[ \sum_{n=2}^{5} \binom{52-n}{3} = \binom{50}{3} + \binom{49}{3} + \binom{48}{3} + \binom{47}{3} \] 5. **Use the Hockey Stick Identity**: - The Hockey Stick Identity states that: \[ \binom{r}{k} + \binom{r+1}{k} + \binom{r+2}{k} + \ldots + \binom{n}{k} = \binom{n+1}{k+1} \] - Applying this to our summation: \[ \binom{50}{3} + \binom{49}{3} + \binom{48}{3} + \binom{47}{3} = \binom{51}{4} \] 6. **Combine all parts**: - Now we can combine everything we have calculated: \[ \binom{47}{4} + \binom{51}{3} + \binom{51}{4} \] 7. **Use the Hockey Stick Identity again**: - Combine \( \binom{51}{3} + \binom{51}{4} \): \[ \binom{51}{3} + \binom{51}{4} = \binom{52}{4} \] 8. **Final result**: - Thus, we have: \[ \binom{47}{4} + \binom{52}{4} \] 9. **Final answer**: - The final answer is \( \binom{52}{4} \).
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|41 Videos
  • BINARY NUMBER

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|27 Videos
  • CIRCLE

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |21 Videos

Similar Questions

Explore conceptually related problems

What is ""^(47)C_(4)+""^(51)C_(3)+ sum_(j=2)^(5) ""^(52-j)C_(3) equal to ?

If ""^(47)C_(4)+sum_(r=1)^(5) ""^(52-r)C_(3) is equal to

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then 1^(2).C_(1) + 2^(2) + 3^(3).C_(3) + ...+n^(2).C_(n)= .

Let n in N and [x] denote the greatest integer less than or equal to x. If the sum of (n + 1) terms ""^(n) C_(0) , 3 .""^(n)C_(1) , 5. :""^(n) C_(2) , & .""^(n)C_(3) is equal to 2 ^(100) . 101 then 2 [(n-1)/(2)] is equal to _________

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1^(2). C_(1) - 2^(2) . C_(2)+ 3^(2). C_(3) -4^(2)C_(4) + ...+ (-1).""^(n-2)n^(2)C_(n)= .

If C_(0),C_(1), C_(2),...,C_(n) denote the cefficients in the expansion of (1 + x)^(n) , then C_(0) + 3 .C_(1) + 5 . C_(2)+ ...+ (2n + 1) C_(n) = .

PUNEET DOGRA-BINOMIAL THEOREM-PREV YEAR QUESTIONS
  1. The value of : [ C ( 7,0) + C ( 7,1) + C ( 7,2) ]+"........."+[C ( 7,6...

    Text Solution

    |

  2. Consider the expansion of ( 1+ x)^(2n+1) The expansion of ( x-y)^(n)...

    Text Solution

    |

  3. Consider the expansion of ( 1+ x)^(2n+1) What is ""^(47)C(4) + ""^(...

    Text Solution

    |

  4. Consider the expansion of ( 1+ x)^(2n+1) The coefficient of x^(99) ...

    Text Solution

    |

  5. Consider the expansion ( x^(2) + ( 1)/( x))^(15) What is the indepe...

    Text Solution

    |

  6. Consider the expansion ( x^(2) + ( 1)/( x))^(15) The sum of the coef...

    Text Solution

    |

  7. Consider the expansion ( x^(2) + ( 1)/( x))^(15) The average of the ...

    Text Solution

    |

  8. Consider the expansion ( x^(2) + ( 1)/( x))^(15) If the coefficient...

    Text Solution

    |

  9. Consider the expansion ( x^(2) + ( 1)/( x))^(15) What is the indepe...

    Text Solution

    |

  10. What is the ratio of coefficient of x^(15) to the term independent of ...

    Text Solution

    |

  11. What is the sum of the coefficients of the middle terms in the given e...

    Text Solution

    |

  12. Consider the following statements. I. There are 15 terms in the give...

    Text Solution

    |

  13. Consider the following statements I. The term containing x^(2) does ...

    Text Solution

    |

  14. In the expansion of ( x^(3) - ( 1)/( x^(2)))^(n), where n is a positi...

    Text Solution

    |

  15. The respective ratio between pooja, prathana, and falguni monthly inco...

    Text Solution

    |

  16. Vikram scored 72% marks in five subjects together, viz hindi, science,...

    Text Solution

    |

  17. How many terms are there in the expansion of ( 1+ 2x + x^(2))^(10) ?

    Text Solution

    |

  18. What is sum(r=0)^(n) C (n,r) equal to ?

    Text Solution

    |

  19. If n be a positive integer and ( 1+x)^(n) = a(0) + a(1)x + a(2)x^(2) +...

    Text Solution

    |

  20. What is the sum of the coefficients in the expansion of ( 1+ x)^(n) ?

    Text Solution

    |