Home
Class 14
MATHS
The value of sum sum(n=1)^(13) ( i^(n) +...

The value of sum `sum_(n=1)^(13) ( i^(n) + i^(n+1))` where `i= sqrt( -1)` , is equal to

A

i

B

i-1

C

`-i`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the summation: \[ \sum_{n=1}^{13} (i^n + i^{n+1}) \] where \(i = \sqrt{-1}\). ### Step 1: Simplify the Summation We can rewrite the summation as follows: \[ \sum_{n=1}^{13} (i^n + i^{n+1}) = \sum_{n=1}^{13} i^n + \sum_{n=1}^{13} i^{n+1} \] The second summation can be adjusted by changing the index: \[ \sum_{n=1}^{13} i^{n+1} = \sum_{m=2}^{14} i^m \] where \(m = n + 1\). Therefore, we can rewrite the original summation as: \[ \sum_{n=1}^{13} (i^n + i^{n+1}) = \sum_{n=1}^{13} i^n + \sum_{m=2}^{14} i^m = \sum_{n=1}^{13} i^n + \sum_{n=1}^{13} i^{n+1} - i^1 \] This results in: \[ \sum_{n=1}^{13} (i^n + i^{n+1}) = \sum_{n=1}^{14} i^n - i^1 \] ### Step 2: Evaluate the Summation Now we need to evaluate \(\sum_{n=1}^{14} i^n\). The powers of \(i\) cycle every 4 terms: - \(i^1 = i\) - \(i^2 = -1\) - \(i^3 = -i\) - \(i^4 = 1\) Thus, the sum of one complete cycle (4 terms) is: \[ i + (-1) + (-i) + 1 = 0 \] Since \(14\) is \(3\) complete cycles plus \(2\) additional terms, we have: \[ \sum_{n=1}^{12} i^n = 3 \cdot 0 = 0 \] Now we add the contributions from the last two terms: \[ \sum_{n=13}^{14} i^n = i^{13} + i^{14} = i + 1 \] Thus: \[ \sum_{n=1}^{14} i^n = 0 + (i + 1) = i + 1 \] ### Step 3: Final Calculation Now we substitute back into our expression: \[ \sum_{n=1}^{13} (i^n + i^{n+1}) = (i + 1) - i = 1 \] ### Conclusion The value of the summation is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|87 Videos
  • CIRCLE

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |21 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos

Similar Questions

Explore conceptually related problems

The value of sum Sigma_(n=1)^(13) (i^n + i^(n+1)) where i= sqrt(-1) equals

What is the value of the sum sum_(n=2)^(11) (i^(n)+i^(n+1)), where i=sqrt(-1)?

The value of the sums sum_(n=1)^(13)(i^(n)+i^(n+1)) where i=sqrt(-)1 is : (a) i(b)i-1(c)-i(d)

The value of sum_(n=1)^(13)(i^(n)+i^(n+1)), where i=sqrt(-1) equals (A)i(B)i-1(C)-i(D)0

Evaluate sum_(n=1)^(13)(i^(n)+i^(n+1)), where n in N

PUNEET DOGRA-COMPLEX NUMBER-PREVIOUS YEAR QUESTIONS
  1. The value of sum sum(n=1)^(13) ( i^(n) + i^(n+1)) where i= sqrt( -1) ,...

    Text Solution

    |

  2. What is the value of [(i+sqrt(3))/(2)]^(2019)+[(i-sqrt(3))/(2)]^(2019)...

    Text Solution

    |

  3. If alpha and beta are the roots f x^(2) + x+1 =0, then what is the val...

    Text Solution

    |

  4. If x=1+i, then what is the value of x^(6) + x^(4) + x^(2) + 1?

    Text Solution

    |

  5. Roots of the equation x^(2017) + x^(2018) +1=0 are

    Text Solution

    |

  6. What is the modulus of | (1+2i)/(1-(1-i)^(2))| ?

    Text Solution

    |

  7. What is the modulus of | (1+2i)/(1-(1-i)^(2))| ?

    Text Solution

    |

  8. What is the value of : ((-1+isqrt(3))/(2))^(3n) + (( -1-isqrt(3))/(2...

    Text Solution

    |

  9. Which one of the following is correct in respect of the cube roots of ...

    Text Solution

    |

  10. What is the principle argument of ( -1-i) where i = sqrt( - 1).

    Text Solution

    |

  11. Let alpha and beta be real number and z be a complex number. If z^(2) ...

    Text Solution

    |

  12. The number of non-zero integral solution of the equation | 1- 2i|^(x) ...

    Text Solution

    |

  13. If alpha and beta are different complex number of with | beta | = 1, t...

    Text Solution

    |

  14. What is i^(1000) + i^(1001) + i^(1002)+i^(1003) is equal to ( where i ...

    Text Solution

    |

  15. The modulus-argument form of sqrt( 3) + i, where i = sqrt( -1) is

    Text Solution

    |

  16. What is the value of the sum sum(n=2)^(11) ( i^(n) + i^(n+1)), where i...

    Text Solution

    |

  17. The smallest positive integer n for which ((1+i)/( 1-i))^(n) =1, is :

    Text Solution

    |

  18. If | z - ( 4)/( z)| =2, then the maximum value o f |z| is equal to :

    Text Solution

    |

  19. The value of i^(2n) + i^(2n+1) + i^(2n+2) + i^(2n+3), where i = sqrt( ...

    Text Solution

    |

  20. The value of ((-1+isqrt( 3))/(2))^(n) + (( -1-isqrt(3))/(2))^(n) where...

    Text Solution

    |

  21. If 1, omega, omega^(2) are the cube roots of unity, then ( 1+ omega) (...

    Text Solution

    |