Home
Class 14
MATHS
The conjugate of ( 2- i)/((1-2i)^(2) is...

The conjugate of `( 2- i)/((1-2i)^(2) ` is

A

`( 2)/( 25) - (i11)/( 25)`

B

`(- 2)/( 25) - (i11)/( 25)`

C

`(- 2)/( 25) + (i11)/( 25)`

D

`(2)/( 25) + (i11)/( 25)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the conjugate of the expression \(\frac{2 - i}{(1 - 2i)^2}\), we will follow these steps: ### Step 1: Write the expression We start with the expression: \[ \frac{2 - i}{(1 - 2i)^2} \] ### Step 2: Calculate the denominator First, we need to calculate \((1 - 2i)^2\): \[ (1 - 2i)^2 = 1^2 - 2 \cdot 1 \cdot 2i + (2i)^2 = 1 - 4i - 4(-1) = 1 - 4i + 4 = 5 - 4i \] ### Step 3: Substitute back into the expression Now we substitute back into the expression: \[ \frac{2 - i}{5 - 4i} \] ### Step 4: Rationalize the denominator To rationalize the denominator, we multiply the numerator and the denominator by the conjugate of the denominator, which is \(5 + 4i\): \[ \frac{(2 - i)(5 + 4i)}{(5 - 4i)(5 + 4i)} \] ### Step 5: Calculate the denominator Calculating the denominator: \[ (5 - 4i)(5 + 4i) = 5^2 - (4i)^2 = 25 - 16(-1) = 25 + 16 = 41 \] ### Step 6: Calculate the numerator Now we calculate the numerator: \[ (2 - i)(5 + 4i) = 2 \cdot 5 + 2 \cdot 4i - i \cdot 5 - i \cdot 4i = 10 + 8i - 5i - 4(-1) = 10 + 8i - 5i + 4 = 14 + 3i \] ### Step 7: Combine the results Now we combine the results: \[ \frac{14 + 3i}{41} \] ### Step 8: Write the final expression Thus, the expression simplifies to: \[ \frac{14}{41} + \frac{3}{41}i \] ### Step 9: Find the conjugate The conjugate of a complex number \(a + bi\) is \(a - bi\). Therefore, the conjugate of \(\frac{14}{41} + \frac{3}{41}i\) is: \[ \frac{14}{41} - \frac{3}{41}i \] ### Final Answer The conjugate of \(\frac{2 - i}{(1 - 2i)^2}\) is: \[ \frac{14}{41} - \frac{3}{41}i \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|87 Videos
  • CIRCLE

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |21 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos

Similar Questions

Explore conceptually related problems

What is the conjugate of (2-i)/((1-2i)^(2)) ?

Write the conjugate of (2-i)/((1-2i)^(2))

Find the conjugate of (2-i)/(2+i)

Find the conjugate of (1-i)/(1+i)

What is the conjugate of ((1+2i)/(2+i))^(2) ?

The conjugate of ((1+2i)^(2))/(3-i) is

(1+2i)/(1-(1-i)^2)

Find the conjugate of ((1-2i)^(2))/(2 + i)

Find the conjugate of (3+i)/(2+5i)

PUNEET DOGRA-COMPLEX NUMBER-PREVIOUS YEAR QUESTIONS
  1. The conjugate of ( 2- i)/((1-2i)^(2) is

    Text Solution

    |

  2. What is the value of [(i+sqrt(3))/(2)]^(2019)+[(i-sqrt(3))/(2)]^(2019)...

    Text Solution

    |

  3. If alpha and beta are the roots f x^(2) + x+1 =0, then what is the val...

    Text Solution

    |

  4. If x=1+i, then what is the value of x^(6) + x^(4) + x^(2) + 1?

    Text Solution

    |

  5. Roots of the equation x^(2017) + x^(2018) +1=0 are

    Text Solution

    |

  6. What is the modulus of | (1+2i)/(1-(1-i)^(2))| ?

    Text Solution

    |

  7. What is the modulus of | (1+2i)/(1-(1-i)^(2))| ?

    Text Solution

    |

  8. What is the value of : ((-1+isqrt(3))/(2))^(3n) + (( -1-isqrt(3))/(2...

    Text Solution

    |

  9. Which one of the following is correct in respect of the cube roots of ...

    Text Solution

    |

  10. What is the principle argument of ( -1-i) where i = sqrt( - 1).

    Text Solution

    |

  11. Let alpha and beta be real number and z be a complex number. If z^(2) ...

    Text Solution

    |

  12. The number of non-zero integral solution of the equation | 1- 2i|^(x) ...

    Text Solution

    |

  13. If alpha and beta are different complex number of with | beta | = 1, t...

    Text Solution

    |

  14. What is i^(1000) + i^(1001) + i^(1002)+i^(1003) is equal to ( where i ...

    Text Solution

    |

  15. The modulus-argument form of sqrt( 3) + i, where i = sqrt( -1) is

    Text Solution

    |

  16. What is the value of the sum sum(n=2)^(11) ( i^(n) + i^(n+1)), where i...

    Text Solution

    |

  17. The smallest positive integer n for which ((1+i)/( 1-i))^(n) =1, is :

    Text Solution

    |

  18. If | z - ( 4)/( z)| =2, then the maximum value o f |z| is equal to :

    Text Solution

    |

  19. The value of i^(2n) + i^(2n+1) + i^(2n+2) + i^(2n+3), where i = sqrt( ...

    Text Solution

    |

  20. The value of ((-1+isqrt( 3))/(2))^(n) + (( -1-isqrt(3))/(2))^(n) where...

    Text Solution

    |

  21. If 1, omega, omega^(2) are the cube roots of unity, then ( 1+ omega) (...

    Text Solution

    |