Home
Class 14
MATHS
If arg ( z-1) = arg ( z+ 3 i) , then x ...

If arg ( z-1) = arg `( z+ 3 i)` , then x -1`:` y is equal to

A

`3:1`

B

`1:3`

C

`3:2`

D

`2:3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \arg(z - 1) = \arg(z + 3i) \), we will follow these steps: ### Step 1: Express \( z \) in terms of \( x \) and \( y \) Let \( z = x + yi \), where \( x \) is the real part and \( y \) is the imaginary part of the complex number \( z \). ### Step 2: Write the arguments We need to find the arguments of \( z - 1 \) and \( z + 3i \): - \( z - 1 = (x - 1) + yi \) - \( z + 3i = x + (y + 3)i \) ### Step 3: Set up the argument equations The arguments can be expressed as: \[ \arg(z - 1) = \tan^{-1}\left(\frac{y}{x - 1}\right) \] \[ \arg(z + 3i) = \tan^{-1}\left(\frac{y + 3}{x}\right) \] ### Step 4: Set the arguments equal Since \( \arg(z - 1) = \arg(z + 3i) \), we have: \[ \tan^{-1}\left(\frac{y}{x - 1}\right) = \tan^{-1}\left(\frac{y + 3}{x}\right) \] ### Step 5: Eliminate the inverse tangent Taking the tangent of both sides gives: \[ \frac{y}{x - 1} = \frac{y + 3}{x} \] ### Step 6: Cross-multiply Cross-multiplying gives: \[ y \cdot x = (y + 3)(x - 1) \] ### Step 7: Expand and simplify Expanding the right side: \[ yx = yx - y + 3x - 3 \] Now, cancel \( yx \) from both sides: \[ 0 = -y + 3x - 3 \] Rearranging gives: \[ y = 3x - 3 \] ### Step 8: Find the ratio \( \frac{x - 1}{y} \) Substituting \( y \) into the ratio: \[ \frac{x - 1}{y} = \frac{x - 1}{3x - 3} \] This simplifies to: \[ \frac{x - 1}{3(x - 1)} = \frac{1}{3} \] ### Final Answer Thus, the ratio \( x - 1 : y \) is \( 1 : 3 \). ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|87 Videos
  • CIRCLE

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |21 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos

Similar Questions

Explore conceptually related problems

If z= x+iy satisfies the equation arg (z-2)="arg" (2z+3i) , then 3x-4y is equal to

If arg (bar (z) _ (1)) = arg (z_ (2)) then

If arg(z-1)=arg(z+3i), then find (x-1):y, where z=x+iy

If arg(z-1)=arg(z+2i), then find (x-1):y, where z=x+iy

If z_(1),z_(2) and z_(3) are three distinct complex numbers such that |z_(1)| = 1, |z_(2)| = 2, |z_(3)| = 4, arg(z_(2)) = arg(z_(1)) - pi, arg(z_(3)) = arg(z_(1)) + pi//2 , then z_(2)z_(3) is equal to

arg(bar(z))=-arg(z)

PUNEET DOGRA-COMPLEX NUMBER-PREVIOUS YEAR QUESTIONS
  1. If arg ( z-1) = arg ( z+ 3 i) , then x -1: y is equal to

    Text Solution

    |

  2. What is the value of [(i+sqrt(3))/(2)]^(2019)+[(i-sqrt(3))/(2)]^(2019)...

    Text Solution

    |

  3. If alpha and beta are the roots f x^(2) + x+1 =0, then what is the val...

    Text Solution

    |

  4. If x=1+i, then what is the value of x^(6) + x^(4) + x^(2) + 1?

    Text Solution

    |

  5. Roots of the equation x^(2017) + x^(2018) +1=0 are

    Text Solution

    |

  6. What is the modulus of | (1+2i)/(1-(1-i)^(2))| ?

    Text Solution

    |

  7. What is the modulus of | (1+2i)/(1-(1-i)^(2))| ?

    Text Solution

    |

  8. What is the value of : ((-1+isqrt(3))/(2))^(3n) + (( -1-isqrt(3))/(2...

    Text Solution

    |

  9. Which one of the following is correct in respect of the cube roots of ...

    Text Solution

    |

  10. What is the principle argument of ( -1-i) where i = sqrt( - 1).

    Text Solution

    |

  11. Let alpha and beta be real number and z be a complex number. If z^(2) ...

    Text Solution

    |

  12. The number of non-zero integral solution of the equation | 1- 2i|^(x) ...

    Text Solution

    |

  13. If alpha and beta are different complex number of with | beta | = 1, t...

    Text Solution

    |

  14. What is i^(1000) + i^(1001) + i^(1002)+i^(1003) is equal to ( where i ...

    Text Solution

    |

  15. The modulus-argument form of sqrt( 3) + i, where i = sqrt( -1) is

    Text Solution

    |

  16. What is the value of the sum sum(n=2)^(11) ( i^(n) + i^(n+1)), where i...

    Text Solution

    |

  17. The smallest positive integer n for which ((1+i)/( 1-i))^(n) =1, is :

    Text Solution

    |

  18. If | z - ( 4)/( z)| =2, then the maximum value o f |z| is equal to :

    Text Solution

    |

  19. The value of i^(2n) + i^(2n+1) + i^(2n+2) + i^(2n+3), where i = sqrt( ...

    Text Solution

    |

  20. The value of ((-1+isqrt( 3))/(2))^(n) + (( -1-isqrt(3))/(2))^(n) where...

    Text Solution

    |

  21. If 1, omega, omega^(2) are the cube roots of unity, then ( 1+ omega) (...

    Text Solution

    |