Home
Class 14
MATHS
If f(z) = (7-z)/( 1-z^(2)), where z =1+2...

If `f(z) = (7-z)/( 1-z^(2))`, where `z =1+2i`, then `|f (z) |` is

A

`(|z|)/(2)`

B

`|z|`

C

`2|z|`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the modulus of the function \( f(z) = \frac{7 - z}{1 - z^2} \) where \( z = 1 + 2i \). ### Step-by-Step Solution 1. **Calculate \( z^2 \)**: \[ z = 1 + 2i \] \[ z^2 = (1 + 2i)^2 = 1^2 + 2 \cdot 1 \cdot 2i + (2i)^2 = 1 + 4i - 4 = -3 + 4i \] 2. **Substitute \( z \) and \( z^2 \) into \( f(z) \)**: \[ f(z) = \frac{7 - (1 + 2i)}{1 - (-3 + 4i)} \] Simplifying the numerator: \[ 7 - (1 + 2i) = 6 - 2i \] Simplifying the denominator: \[ 1 - (-3 + 4i) = 1 + 3 - 4i = 4 - 4i \] Thus, \[ f(z) = \frac{6 - 2i}{4 - 4i} \] 3. **Rationalize the denominator**: Multiply the numerator and denominator by the conjugate of the denominator: \[ f(z) = \frac{(6 - 2i)(4 + 4i)}{(4 - 4i)(4 + 4i)} \] Calculating the denominator: \[ (4 - 4i)(4 + 4i) = 16 + 16 = 32 \] Calculating the numerator: \[ (6 - 2i)(4 + 4i) = 24 + 24i - 8i - 8 = 16 + 16i \] Thus, \[ f(z) = \frac{16 + 16i}{32} = \frac{1 + i}{2} \] 4. **Find the modulus \( |f(z)| \)**: The modulus of a complex number \( a + bi \) is given by: \[ |a + bi| = \sqrt{a^2 + b^2} \] Here, \( a = \frac{1}{2} \) and \( b = \frac{1}{2} \): \[ |f(z)| = \left| \frac{1}{2} + \frac{1}{2}i \right| = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{1}{4}} = \sqrt{\frac{2}{4}} = \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \] 5. **Express \( |f(z)| \) in terms of \( |z| \)**: We know that \( |z| = |1 + 2i| = \sqrt{1^2 + 2^2} = \sqrt{5} \). We can express \( |f(z)| \) as: \[ |f(z)| = \frac{|z|}{2} \] ### Final Answer Thus, the modulus \( |f(z)| \) is: \[ |f(z)| = \frac{\sqrt{5}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|87 Videos
  • CIRCLE

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |21 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos

Similar Questions

Explore conceptually related problems

if z_(1) = 3i and z_(2) =1 + 2i , then find z_(1)z_(2) -z_(1)

If z_(1) = 4 -I and z_(2) = - 3 + 7i then find (i) z_(1) +z_(2) (ii) z_(1) -z_(2)

If |z - 1| = |z + 1| = |z - 2i|, then value of |z| is

If Z_(1)=2 + 3i and z_(2) = -1 + 2i then find (i) z_(1) +z_(2) (ii) z_(1) -z_(2) (iii) z_(1).z_(2) (iv) z_(1)/z_(2)

If |z-2-i|=|z|sin((pi)/(4)-arg z)|, where i=sqrt(-1) ,then locus of z, is

If z_(1)=iz_(2) and z_(1)-z_(3)=i(z_(3)-z_(2)), then prove that |z_(3)|=sqrt(2)|z_(1)|

PUNEET DOGRA-COMPLEX NUMBER-PREVIOUS YEAR QUESTIONS
  1. If f(z) = (7-z)/( 1-z^(2)), where z =1+2i, then |f (z) | is

    Text Solution

    |

  2. What is the value of [(i+sqrt(3))/(2)]^(2019)+[(i-sqrt(3))/(2)]^(2019)...

    Text Solution

    |

  3. If alpha and beta are the roots f x^(2) + x+1 =0, then what is the val...

    Text Solution

    |

  4. If x=1+i, then what is the value of x^(6) + x^(4) + x^(2) + 1?

    Text Solution

    |

  5. Roots of the equation x^(2017) + x^(2018) +1=0 are

    Text Solution

    |

  6. What is the modulus of | (1+2i)/(1-(1-i)^(2))| ?

    Text Solution

    |

  7. What is the modulus of | (1+2i)/(1-(1-i)^(2))| ?

    Text Solution

    |

  8. What is the value of : ((-1+isqrt(3))/(2))^(3n) + (( -1-isqrt(3))/(2...

    Text Solution

    |

  9. Which one of the following is correct in respect of the cube roots of ...

    Text Solution

    |

  10. What is the principle argument of ( -1-i) where i = sqrt( - 1).

    Text Solution

    |

  11. Let alpha and beta be real number and z be a complex number. If z^(2) ...

    Text Solution

    |

  12. The number of non-zero integral solution of the equation | 1- 2i|^(x) ...

    Text Solution

    |

  13. If alpha and beta are different complex number of with | beta | = 1, t...

    Text Solution

    |

  14. What is i^(1000) + i^(1001) + i^(1002)+i^(1003) is equal to ( where i ...

    Text Solution

    |

  15. The modulus-argument form of sqrt( 3) + i, where i = sqrt( -1) is

    Text Solution

    |

  16. What is the value of the sum sum(n=2)^(11) ( i^(n) + i^(n+1)), where i...

    Text Solution

    |

  17. The smallest positive integer n for which ((1+i)/( 1-i))^(n) =1, is :

    Text Solution

    |

  18. If | z - ( 4)/( z)| =2, then the maximum value o f |z| is equal to :

    Text Solution

    |

  19. The value of i^(2n) + i^(2n+1) + i^(2n+2) + i^(2n+3), where i = sqrt( ...

    Text Solution

    |

  20. The value of ((-1+isqrt( 3))/(2))^(n) + (( -1-isqrt(3))/(2))^(n) where...

    Text Solution

    |

  21. If 1, omega, omega^(2) are the cube roots of unity, then ( 1+ omega) (...

    Text Solution

    |