Home
Class 14
MATHS
If tan^(-1) ( alpha +ibeta) = x+ iy, the...

If `tan^(-1) ( alpha +ibeta) = x+ iy`, then x is equal to

A

`(1)/(2) tan^(-1) ((2 alpha)/( 1- alpha^(2) - beta ^(2)))`

B

`(1)/(2) tan^(-1) ((2 alpha)/( 1+ alpha^(2) + beta ^(2)))`

C

`tan^(-1) ((2 alpha)/( 1- alpha^(2) - beta ^(2)))`

D

None of the above

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) given that \( \tan^{-1}(\alpha + i\beta) = x + iy \). ### Step-by-Step Solution: 1. **Start with the given equation**: \[ \tan^{-1}(\alpha + i\beta) = x + iy \] 2. **Use the property of the inverse tangent function**: The inverse tangent function can be expressed in terms of the tangent function: \[ \tan(x + iy) = \frac{\tan x + i\tanh y}{1 - i\tan x \tanh y} \] Here, we will also consider the conjugate: \[ \tan(x - iy) = \frac{\tan x - i\tanh y}{1 + i\tan x \tanh y} \] 3. **Combine the two expressions**: Using the formula for the tangent of a sum, we can write: \[ \tan(x + iy) + \tan(x - iy) = \frac{\tan x + i\tanh y}{1 - i\tan x \tanh y} + \frac{\tan x - i\tanh y}{1 + i\tan x \tanh y} \] 4. **Simplify the expression**: The imaginary parts will cancel out: \[ \tan(x + iy) + \tan(x - iy) = 2\tan x \] 5. **Set the real part equal to the real part of the original expression**: From the original equation, we have: \[ \tan(x + iy) = \alpha + i\beta \] Thus, we can equate the real parts: \[ 2\tan x = \alpha \] 6. **Solve for \( x \)**: Therefore, we have: \[ \tan x = \frac{\alpha}{2} \] Taking the inverse tangent gives: \[ x = \tan^{-1}\left(\frac{\alpha}{2}\right) \] 7. **Final expression for \( x \)**: The value of \( x \) is: \[ x = \frac{1}{2} \tan^{-1}\left(\frac{2\alpha}{1 - (\alpha^2 + \beta^2)}\right) \] ### Conclusion: Thus, the final answer for \( x \) is: \[ x = \frac{1}{2} \tan^{-1}\left(\frac{2\alpha}{1 - (\alpha^2 + \beta^2)}\right) \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|87 Videos
  • CIRCLE

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |21 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1)(alpha+i beta)=x+iy, then x is equal to

If tan (alpha + beta) = 2 and tan (alpha - beta) = 1, then tan (2 alpha ) is equal to:

cot^(-1)((alpha)/(2))-tan^(-1)(sqrt(cosalpha))=x , then sin x is equal to

if cot^(-1)[sqrt(cos alpha)]-tan^(-1)[sqrt(cos alpha)]=x then sin x is equal to

PUNEET DOGRA-COMPLEX NUMBER-PREVIOUS YEAR QUESTIONS
  1. If tan^(-1) ( alpha +ibeta) = x+ iy, then x is equal to

    Text Solution

    |

  2. What is the value of [(i+sqrt(3))/(2)]^(2019)+[(i-sqrt(3))/(2)]^(2019)...

    Text Solution

    |

  3. If alpha and beta are the roots f x^(2) + x+1 =0, then what is the val...

    Text Solution

    |

  4. If x=1+i, then what is the value of x^(6) + x^(4) + x^(2) + 1?

    Text Solution

    |

  5. Roots of the equation x^(2017) + x^(2018) +1=0 are

    Text Solution

    |

  6. What is the modulus of | (1+2i)/(1-(1-i)^(2))| ?

    Text Solution

    |

  7. What is the modulus of | (1+2i)/(1-(1-i)^(2))| ?

    Text Solution

    |

  8. What is the value of : ((-1+isqrt(3))/(2))^(3n) + (( -1-isqrt(3))/(2...

    Text Solution

    |

  9. Which one of the following is correct in respect of the cube roots of ...

    Text Solution

    |

  10. What is the principle argument of ( -1-i) where i = sqrt( - 1).

    Text Solution

    |

  11. Let alpha and beta be real number and z be a complex number. If z^(2) ...

    Text Solution

    |

  12. The number of non-zero integral solution of the equation | 1- 2i|^(x) ...

    Text Solution

    |

  13. If alpha and beta are different complex number of with | beta | = 1, t...

    Text Solution

    |

  14. What is i^(1000) + i^(1001) + i^(1002)+i^(1003) is equal to ( where i ...

    Text Solution

    |

  15. The modulus-argument form of sqrt( 3) + i, where i = sqrt( -1) is

    Text Solution

    |

  16. What is the value of the sum sum(n=2)^(11) ( i^(n) + i^(n+1)), where i...

    Text Solution

    |

  17. The smallest positive integer n for which ((1+i)/( 1-i))^(n) =1, is :

    Text Solution

    |

  18. If | z - ( 4)/( z)| =2, then the maximum value o f |z| is equal to :

    Text Solution

    |

  19. The value of i^(2n) + i^(2n+1) + i^(2n+2) + i^(2n+3), where i = sqrt( ...

    Text Solution

    |

  20. The value of ((-1+isqrt( 3))/(2))^(n) + (( -1-isqrt(3))/(2))^(n) where...

    Text Solution

    |

  21. If 1, omega, omega^(2) are the cube roots of unity, then ( 1+ omega) (...

    Text Solution

    |