Home
Class 14
MATHS
If z(1) , z(2) and z(3) , z(4) are two p...

If `z_(1) , z_(2)` and `z_(3) , z_(4)` are two pairs of conjugate complex numbers, then arg (z1/z4) +arg (z2/z3) . is equal to

A

A. 0

B

B. `(pi)/(2)`

C

C. `(3pi)/(2)`

D

D. `pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \text{arg} \left( \frac{z_1}{z_4} \right) + \text{arg} \left( \frac{z_2}{z_3} \right) \). ### Step-by-Step Solution: 1. **Identify the Conjugate Relationships**: Given that \( z_2 \) is the conjugate of \( z_1 \) and \( z_4 \) is the conjugate of \( z_3 \), we can express: \[ z_2 = \overline{z_1}, \quad z_4 = \overline{z_3} \] 2. **Define Arguments**: Let \( \text{arg}(z_1) = \theta_1 \) and \( \text{arg}(z_3) = \theta_2 \). Then, the arguments of the conjugates are: \[ \text{arg}(z_2) = -\theta_1, \quad \text{arg}(z_4) = -\theta_2 \] 3. **Apply the Argument Property**: We use the property of arguments: \[ \text{arg} \left( \frac{a}{b} \right) = \text{arg}(a) - \text{arg}(b) \] Thus, we can write: \[ \text{arg} \left( \frac{z_1}{z_4} \right) = \text{arg}(z_1) - \text{arg}(z_4) = \theta_1 - (-\theta_2) = \theta_1 + \theta_2 \] and \[ \text{arg} \left( \frac{z_2}{z_3} \right) = \text{arg}(z_2) - \text{arg}(z_3) = -\theta_1 - \theta_2 \] 4. **Combine the Arguments**: Now, we can combine the two results: \[ \text{arg} \left( \frac{z_1}{z_4} \right) + \text{arg} \left( \frac{z_2}{z_3} \right) = (\theta_1 + \theta_2) + (-\theta_1 - \theta_2) \] 5. **Simplify the Expression**: Simplifying the expression gives: \[ \theta_1 + \theta_2 - \theta_1 - \theta_2 = 0 \] ### Conclusion: Thus, we find that: \[ \text{arg} \left( \frac{z_1}{z_4} \right) + \text{arg} \left( \frac{z_2}{z_3} \right) = 0 \] ### Final Answer: The answer is \( 0 \).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|87 Videos
  • CIRCLE

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |21 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos

Similar Questions

Explore conceptually related problems

If z_(1),z_(2) and z_(3),z_(4) are two pairs of conjugate complex numbers then arg ((z_(1))/(z_(4)))+arg((z_(2))/(z_(3))) equals

If z_(1),z_(2),z_(3),z_(4) are two pairs of conjugate complex numbers, then arg(z_(1)/z_(3)) + arg(z_(2)/z_(4)) is

If z_(1),z_(2) and z_(3),z_(4) are two pairs of conjugate complex numbers then arg((z_(1))/(z_(4)))+arg((z_(2))/(z_(3)))=

If Z_1,Z_2 and Z_3 , Z_4 are two pairs of conjugate complex numbers then arg (Z_1/Z_4) + arg (Z_2/Z_3) equals:

If z_(1),z_(2) and z_(3),z_(4) are two pairs of conjugate complex numbers,prove that arg ((z_(1))/(z_(4)))+arg((z_(2))/(z_(3)))=0

If z_(1),z_(2) and z_(3),z_(4) are two pairs of conjugate complex numbers,hen find the value of arg(z_(1)/z_(4))+arg(z_(2)/z_(3))*a

If z^(1),z^(2) and z^(3),z^(4) are two pairs of conjugate complex number, then find arg 2((z_(1))/(z_(4)))+ ((z_(2))/(z_(3))).

PUNEET DOGRA-COMPLEX NUMBER-PREVIOUS YEAR QUESTIONS
  1. If z(1) , z(2) and z(3) , z(4) are two pairs of conjugate complex numb...

    Text Solution

    |

  2. What is the value of [(i+sqrt(3))/(2)]^(2019)+[(i-sqrt(3))/(2)]^(2019)...

    Text Solution

    |

  3. If alpha and beta are the roots f x^(2) + x+1 =0, then what is the val...

    Text Solution

    |

  4. If x=1+i, then what is the value of x^(6) + x^(4) + x^(2) + 1?

    Text Solution

    |

  5. Roots of the equation x^(2017) + x^(2018) +1=0 are

    Text Solution

    |

  6. What is the modulus of | (1+2i)/(1-(1-i)^(2))| ?

    Text Solution

    |

  7. What is the modulus of | (1+2i)/(1-(1-i)^(2))| ?

    Text Solution

    |

  8. What is the value of : ((-1+isqrt(3))/(2))^(3n) + (( -1-isqrt(3))/(2...

    Text Solution

    |

  9. Which one of the following is correct in respect of the cube roots of ...

    Text Solution

    |

  10. What is the principle argument of ( -1-i) where i = sqrt( - 1).

    Text Solution

    |

  11. Let alpha and beta be real number and z be a complex number. If z^(2) ...

    Text Solution

    |

  12. The number of non-zero integral solution of the equation | 1- 2i|^(x) ...

    Text Solution

    |

  13. If alpha and beta are different complex number of with | beta | = 1, t...

    Text Solution

    |

  14. What is i^(1000) + i^(1001) + i^(1002)+i^(1003) is equal to ( where i ...

    Text Solution

    |

  15. The modulus-argument form of sqrt( 3) + i, where i = sqrt( -1) is

    Text Solution

    |

  16. What is the value of the sum sum(n=2)^(11) ( i^(n) + i^(n+1)), where i...

    Text Solution

    |

  17. The smallest positive integer n for which ((1+i)/( 1-i))^(n) =1, is :

    Text Solution

    |

  18. If | z - ( 4)/( z)| =2, then the maximum value o f |z| is equal to :

    Text Solution

    |

  19. The value of i^(2n) + i^(2n+1) + i^(2n+2) + i^(2n+3), where i = sqrt( ...

    Text Solution

    |

  20. The value of ((-1+isqrt( 3))/(2))^(n) + (( -1-isqrt(3))/(2))^(n) where...

    Text Solution

    |

  21. If 1, omega, omega^(2) are the cube roots of unity, then ( 1+ omega) (...

    Text Solution

    |