Home
Class 14
MATHS
The argument of ((1-isqrt(3)))/((1+isqrt...

The argument of `((1-isqrt(3)))/((1+isqrt(3)))` is

A

A) `60^(@)`

B

B) `120^(@)`

C

C) `210^(@)`

D

D) `240^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the argument of the complex number \(\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\), we can follow these steps: ### Step 1: Write the complex number in standard form The given complex number is \(\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\). ### Step 2: Multiply numerator and denominator by the conjugate of the denominator To simplify, we multiply both the numerator and the denominator by the conjugate of the denominator, which is \(1 - i\sqrt{3}\): \[ \frac{(1 - i\sqrt{3})(1 - i\sqrt{3})}{(1 + i\sqrt{3})(1 - i\sqrt{3})} \] ### Step 3: Simplify the numerator Calculating the numerator: \[ (1 - i\sqrt{3})(1 - i\sqrt{3}) = 1 - 2i\sqrt{3} + (i\sqrt{3})^2 = 1 - 2i\sqrt{3} - 3 = -2 - 2i\sqrt{3} \] ### Step 4: Simplify the denominator Calculating the denominator: \[ (1 + i\sqrt{3})(1 - i\sqrt{3}) = 1 - (i\sqrt{3})^2 = 1 - (-3) = 1 + 3 = 4 \] ### Step 5: Combine the results Now we can write the expression as: \[ \frac{-2 - 2i\sqrt{3}}{4} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i \] ### Step 6: Identify the real and imaginary parts From \(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\), we identify: - Real part \(x = -\frac{1}{2}\) - Imaginary part \(y = -\frac{\sqrt{3}}{2}\) ### Step 7: Determine the quadrant Since both the real part and the imaginary part are negative, the complex number lies in the third quadrant. ### Step 8: Find the reference angle The reference angle can be found using: \[ \cos \theta = -\frac{1}{2} \quad \text{and} \quad \sin \theta = -\frac{\sqrt{3}}{2} \] The angles corresponding to these values are \(60^\circ\) (for cosine) and \(60^\circ\) (for sine). ### Step 9: Calculate the argument Since the complex number is in the third quadrant, we add \(180^\circ\) to the reference angle: \[ \text{Argument} = 180^\circ + 60^\circ = 240^\circ \] ### Final Answer Thus, the argument of the complex number \(\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\) is \(240^\circ\). ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|87 Videos
  • CIRCLE

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |21 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos

Similar Questions

Explore conceptually related problems

For any integer n,the argument of ((sqrt(3)+i)^(4n+1))/((1-i sqrt(3))^(4n))

The value of (1+isqrt(3))/(1-isqrt(3))^(6)+(1-isqrt(3))/(1+isqrt(3))^(6) is

(sqrt3+i)/(-1-isqrt3)=?

4.The value of ((1+isqrt3)/(1-isqrt3))^6 + ((1-isqrt3)/(1+isqrt3))^6

4.The value of ((1+isqrt3)/(1-isqrt3))^6 + ((1-isqrt3)/(1+isqrt3))^6

What is the value of ((1=-+isqrt3)/(2))^(3n)+((-1+isqrt3)/(2))^(3n) where i=sqrt(-1) ?

Principal argument of z=-1-i sqrt(3)

PUNEET DOGRA-COMPLEX NUMBER-PREVIOUS YEAR QUESTIONS
  1. The argument of ((1-isqrt(3)))/((1+isqrt(3))) is

    Text Solution

    |

  2. What is the value of [(i+sqrt(3))/(2)]^(2019)+[(i-sqrt(3))/(2)]^(2019)...

    Text Solution

    |

  3. If alpha and beta are the roots f x^(2) + x+1 =0, then what is the val...

    Text Solution

    |

  4. If x=1+i, then what is the value of x^(6) + x^(4) + x^(2) + 1?

    Text Solution

    |

  5. Roots of the equation x^(2017) + x^(2018) +1=0 are

    Text Solution

    |

  6. What is the modulus of | (1+2i)/(1-(1-i)^(2))| ?

    Text Solution

    |

  7. What is the modulus of | (1+2i)/(1-(1-i)^(2))| ?

    Text Solution

    |

  8. What is the value of : ((-1+isqrt(3))/(2))^(3n) + (( -1-isqrt(3))/(2...

    Text Solution

    |

  9. Which one of the following is correct in respect of the cube roots of ...

    Text Solution

    |

  10. What is the principle argument of ( -1-i) where i = sqrt( - 1).

    Text Solution

    |

  11. Let alpha and beta be real number and z be a complex number. If z^(2) ...

    Text Solution

    |

  12. The number of non-zero integral solution of the equation | 1- 2i|^(x) ...

    Text Solution

    |

  13. If alpha and beta are different complex number of with | beta | = 1, t...

    Text Solution

    |

  14. What is i^(1000) + i^(1001) + i^(1002)+i^(1003) is equal to ( where i ...

    Text Solution

    |

  15. The modulus-argument form of sqrt( 3) + i, where i = sqrt( -1) is

    Text Solution

    |

  16. What is the value of the sum sum(n=2)^(11) ( i^(n) + i^(n+1)), where i...

    Text Solution

    |

  17. The smallest positive integer n for which ((1+i)/( 1-i))^(n) =1, is :

    Text Solution

    |

  18. If | z - ( 4)/( z)| =2, then the maximum value o f |z| is equal to :

    Text Solution

    |

  19. The value of i^(2n) + i^(2n+1) + i^(2n+2) + i^(2n+3), where i = sqrt( ...

    Text Solution

    |

  20. The value of ((-1+isqrt( 3))/(2))^(n) + (( -1-isqrt(3))/(2))^(n) where...

    Text Solution

    |

  21. If 1, omega, omega^(2) are the cube roots of unity, then ( 1+ omega) (...

    Text Solution

    |