Home
Class 14
MATHS
If iz^(3) + z^(2) -z+i=0, then |z| is eq...

If `iz^(3) + z^(2) -z+i=0`, then `|z|` is equal to

A

1

B

i

C

`-1`

D

`-i`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( iz^3 + z^2 - z + i = 0 \) for \( |z| \), we can follow these steps: ### Step 1: Rearranging the Equation We start with the equation: \[ iz^3 + z^2 - z + i = 0 \] We can rearrange it to isolate the terms involving \( z \): \[ iz^3 + z^2 - z = -i \] ### Step 2: Factor Out Common Terms Next, we can factor the left-hand side: \[ z^2(iz + 1) - z = -i \] This can be rewritten as: \[ z^2(iz + 1) = z - i \] ### Step 3: Solving the Factorized Equation We can set up two equations based on the factorization: 1. \( z^2 = -i \) 2. \( iz + 1 = 0 \) ### Step 4: Solve for \( z \) from \( z^2 = -i \) To find \( z \), we take the square root of both sides: \[ z = \pm \sqrt{-i} \] To simplify \( \sqrt{-i} \), we can express \( -i \) in polar form. The modulus of \( -i \) is 1, and its argument is \( -\frac{\pi}{2} \): \[ -i = e^{-i\frac{\pi}{2}} \] Thus, \[ \sqrt{-i} = e^{-i\frac{\pi}{4}} = \frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}} \] So, we have: \[ z = \frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}} \quad \text{or} \quad z = -\left(\frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}}\right) \] ### Step 5: Calculate the Modulus of \( z \) Now, we calculate the modulus \( |z| \): \[ |z| = \sqrt{\left(\frac{1}{\sqrt{2}}\right)^2 + \left(-\frac{1}{\sqrt{2}}\right)^2} = \sqrt{\frac{1}{2} + \frac{1}{2}} = \sqrt{1} = 1 \] ### Step 6: Conclusion Thus, the modulus \( |z| \) is: \[ |z| = 1 \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|87 Videos
  • CIRCLE

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |21 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos

Similar Questions

Explore conceptually related problems

z is a complex number satisfying z^(4)+z^(3)+2z^(2)+z+1=0 , then |z| is equal to

If 8iz^(3)+12z^(2)-18z+27i=0 then 2|z|=

Let z_(1), z_(2), z_(3) be the roots of iz^(3) + 5z^(2) - z + 5i = 0 , then |z_(1)| + |z_(2)| + |z_(3)| = _____________.

Show that if iz^(3)+z^(2)-z+i=0, then |z|=1

If iz^(3)+z^(2)-z+i=0, where i=sqrt(-1) then |z| is equal to 1 (b) (1)/(2)(c)(1)/(4) (d) None of these

If z+sqrt(2)|z+1|+i=0, then z equals

If z=re^(i)theta then |e^(iz)| is equal to:

PUNEET DOGRA-COMPLEX NUMBER-PREVIOUS YEAR QUESTIONS
  1. If iz^(3) + z^(2) -z+i=0, then |z| is equal to

    Text Solution

    |

  2. What is the value of [(i+sqrt(3))/(2)]^(2019)+[(i-sqrt(3))/(2)]^(2019)...

    Text Solution

    |

  3. If alpha and beta are the roots f x^(2) + x+1 =0, then what is the val...

    Text Solution

    |

  4. If x=1+i, then what is the value of x^(6) + x^(4) + x^(2) + 1?

    Text Solution

    |

  5. Roots of the equation x^(2017) + x^(2018) +1=0 are

    Text Solution

    |

  6. What is the modulus of | (1+2i)/(1-(1-i)^(2))| ?

    Text Solution

    |

  7. What is the modulus of | (1+2i)/(1-(1-i)^(2))| ?

    Text Solution

    |

  8. What is the value of : ((-1+isqrt(3))/(2))^(3n) + (( -1-isqrt(3))/(2...

    Text Solution

    |

  9. Which one of the following is correct in respect of the cube roots of ...

    Text Solution

    |

  10. What is the principle argument of ( -1-i) where i = sqrt( - 1).

    Text Solution

    |

  11. Let alpha and beta be real number and z be a complex number. If z^(2) ...

    Text Solution

    |

  12. The number of non-zero integral solution of the equation | 1- 2i|^(x) ...

    Text Solution

    |

  13. If alpha and beta are different complex number of with | beta | = 1, t...

    Text Solution

    |

  14. What is i^(1000) + i^(1001) + i^(1002)+i^(1003) is equal to ( where i ...

    Text Solution

    |

  15. The modulus-argument form of sqrt( 3) + i, where i = sqrt( -1) is

    Text Solution

    |

  16. What is the value of the sum sum(n=2)^(11) ( i^(n) + i^(n+1)), where i...

    Text Solution

    |

  17. The smallest positive integer n for which ((1+i)/( 1-i))^(n) =1, is :

    Text Solution

    |

  18. If | z - ( 4)/( z)| =2, then the maximum value o f |z| is equal to :

    Text Solution

    |

  19. The value of i^(2n) + i^(2n+1) + i^(2n+2) + i^(2n+3), where i = sqrt( ...

    Text Solution

    |

  20. The value of ((-1+isqrt( 3))/(2))^(n) + (( -1-isqrt(3))/(2))^(n) where...

    Text Solution

    |

  21. If 1, omega, omega^(2) are the cube roots of unity, then ( 1+ omega) (...

    Text Solution

    |