Home
Class 14
MATHS
If x=1+i, then what is the value of x^(6...

If `x=1+i`, then what is the value of `x^(6) + x^(4) + x^(2) + 1`?

A

`6i-3`

B

`-6i+3`

C

`-6i-3`

D

`6i+3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^6 + x^4 + x^2 + 1 \) where \( x = 1 + i \). ### Step 1: Calculate \( x^2 \) First, we calculate \( x^2 \): \[ x^2 = (1 + i)^2 = 1^2 + 2 \cdot 1 \cdot i + i^2 = 1 + 2i - 1 = 2i \] **Hint:** Use the formula \( (a + b)^2 = a^2 + 2ab + b^2 \) and remember that \( i^2 = -1 \). ### Step 2: Calculate \( x^4 \) Next, we calculate \( x^4 \) using \( x^2 \): \[ x^4 = (x^2)^2 = (2i)^2 = 4i^2 = 4(-1) = -4 \] **Hint:** Remember that squaring a complex number involves squaring the magnitude and doubling the angle, but here we just use \( i^2 = -1 \). ### Step 3: Calculate \( x^6 \) Now, we calculate \( x^6 \) using \( x^2 \): \[ x^6 = x^4 \cdot x^2 = (-4)(2i) = -8i \] **Hint:** To find \( x^6 \), multiply \( x^4 \) and \( x^2 \) directly. ### Step 4: Combine all parts Now we can substitute \( x^6 \), \( x^4 \), and \( x^2 \) into the expression: \[ x^6 + x^4 + x^2 + 1 = (-8i) + (-4) + (2i) + 1 \] ### Step 5: Simplify the expression Combine the real and imaginary parts: \[ = (-4 + 1) + (-8i + 2i) = -3 - 6i \] ### Final Answer Thus, the value of \( x^6 + x^4 + x^2 + 1 \) is: \[ \boxed{-3 - 6i} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|87 Videos
  • CIRCLE

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |21 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos

Similar Questions

Explore conceptually related problems

If x^(2)-4x+1=0 , then what is the value of (x^(6)+x^(-6)) ?

If x + (1 / x) = (sqrt(3) + 1)/ 2 then what is the value of x^(4) + 1 / x^(4) ?

If sin x + sin^(2)x = 1 , then what is the value of cos^(8)x + 2 cos^(6)x + cos^(4)x ?

If 2^(x) - 2^(x-1)=4 , then what is the value of 2^(x) + 2^(x-1) ?

If x^(4) + (1)/( x^4) = 98 and x gt 1 , then what is the value of x - (1)/( x)?

PUNEET DOGRA-COMPLEX NUMBER-PREVIOUS YEAR QUESTIONS
  1. What is the value of [(i+sqrt(3))/(2)]^(2019)+[(i-sqrt(3))/(2)]^(2019)...

    Text Solution

    |

  2. If alpha and beta are the roots f x^(2) + x+1 =0, then what is the val...

    Text Solution

    |

  3. If x=1+i, then what is the value of x^(6) + x^(4) + x^(2) + 1?

    Text Solution

    |

  4. Roots of the equation x^(2017) + x^(2018) +1=0 are

    Text Solution

    |

  5. What is the modulus of | (1+2i)/(1-(1-i)^(2))| ?

    Text Solution

    |

  6. What is the modulus of | (1+2i)/(1-(1-i)^(2))| ?

    Text Solution

    |

  7. What is the value of : ((-1+isqrt(3))/(2))^(3n) + (( -1-isqrt(3))/(2...

    Text Solution

    |

  8. Which one of the following is correct in respect of the cube roots of ...

    Text Solution

    |

  9. What is the principle argument of ( -1-i) where i = sqrt( - 1).

    Text Solution

    |

  10. Let alpha and beta be real number and z be a complex number. If z^(2) ...

    Text Solution

    |

  11. The number of non-zero integral solution of the equation | 1- 2i|^(x) ...

    Text Solution

    |

  12. If alpha and beta are different complex number of with | beta | = 1, t...

    Text Solution

    |

  13. What is i^(1000) + i^(1001) + i^(1002)+i^(1003) is equal to ( where i ...

    Text Solution

    |

  14. The modulus-argument form of sqrt( 3) + i, where i = sqrt( -1) is

    Text Solution

    |

  15. What is the value of the sum sum(n=2)^(11) ( i^(n) + i^(n+1)), where i...

    Text Solution

    |

  16. The smallest positive integer n for which ((1+i)/( 1-i))^(n) =1, is :

    Text Solution

    |

  17. If | z - ( 4)/( z)| =2, then the maximum value o f |z| is equal to :

    Text Solution

    |

  18. The value of i^(2n) + i^(2n+1) + i^(2n+2) + i^(2n+3), where i = sqrt( ...

    Text Solution

    |

  19. The value of ((-1+isqrt( 3))/(2))^(n) + (( -1-isqrt(3))/(2))^(n) where...

    Text Solution

    |

  20. If 1, omega, omega^(2) are the cube roots of unity, then ( 1+ omega) (...

    Text Solution

    |