Home
Class 14
MATHS
What is the value of the sum sum(n=2)^(1...

What is the value of the sum `sum_(n=2)^(11) ( i^(n) + i^(n+1))`, where `i= sqrt( -1)` ?

A

i

B

2i

C

`-2i`

D

`1+i`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum: \[ S = \sum_{n=2}^{11} (i^n + i^{n+1}) \] where \(i = \sqrt{-1}\). ### Step 1: Simplifying the Expression We can rewrite the expression inside the summation: \[ i^n + i^{n+1} = i^n (1 + i) \] Thus, we can express the sum as: \[ S = \sum_{n=2}^{11} i^n (1 + i) \] ### Step 2: Factoring Out the Constant Since \(1 + i\) is a constant with respect to the summation, we can factor it out: \[ S = (1 + i) \sum_{n=2}^{11} i^n \] ### Step 3: Evaluating the Inner Sum Now we need to evaluate the sum \(\sum_{n=2}^{11} i^n\). The powers of \(i\) cycle every 4 terms: - \(i^1 = i\) - \(i^2 = -1\) - \(i^3 = -i\) - \(i^4 = 1\) - \(i^5 = i\) (and so on) Thus, we can compute the terms from \(i^2\) to \(i^{11}\): \[ \begin{align*} i^2 & = -1 \\ i^3 & = -i \\ i^4 & = 1 \\ i^5 & = i \\ i^6 & = -1 \\ i^7 & = -i \\ i^8 & = 1 \\ i^9 & = i \\ i^{10} & = -1 \\ i^{11} & = -i \\ \end{align*} \] ### Step 4: Summing the Terms Now we sum these values: \[ \sum_{n=2}^{11} i^n = (-1) + (-i) + 1 + i + (-1) + (-i) + 1 + i + (-1) + (-i) \] Grouping the terms: - The real parts: \((-1 + 1 - 1 + 1 - 1) = -1\) - The imaginary parts: \((-i - i - i) = -3i\) Thus, we have: \[ \sum_{n=2}^{11} i^n = -1 - 3i \] ### Step 5: Final Calculation Now substituting back into our expression for \(S\): \[ S = (1 + i)(-1 - 3i) \] Using the distributive property: \[ S = -1 - 3i + (-1)i - 3i^2 \] Since \(i^2 = -1\): \[ S = -1 - 3i - i + 3 = 2 - 4i \] ### Final Answer Thus, the value of the sum is: \[ \boxed{2 - 4i} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|87 Videos
  • CIRCLE

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |21 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos

Similar Questions

Explore conceptually related problems

The value of sum Sigma_(n=1)^(13) (i^n + i^(n+1)) where i= sqrt(-1) equals

The value of the sums sum_(n=1)^(13)(i^(n)+i^(n+1)) where i=sqrt(-)1 is : (a) i(b)i-1(c)-i(d)

Evaluate sum_(n=1)^(13)(i^(n)+i^(n+1)), where n in N

PUNEET DOGRA-COMPLEX NUMBER-PREVIOUS YEAR QUESTIONS
  1. What is i^(1000) + i^(1001) + i^(1002)+i^(1003) is equal to ( where i ...

    Text Solution

    |

  2. The modulus-argument form of sqrt( 3) + i, where i = sqrt( -1) is

    Text Solution

    |

  3. What is the value of the sum sum(n=2)^(11) ( i^(n) + i^(n+1)), where i...

    Text Solution

    |

  4. The smallest positive integer n for which ((1+i)/( 1-i))^(n) =1, is :

    Text Solution

    |

  5. If | z - ( 4)/( z)| =2, then the maximum value o f |z| is equal to :

    Text Solution

    |

  6. The value of i^(2n) + i^(2n+1) + i^(2n+2) + i^(2n+3), where i = sqrt( ...

    Text Solution

    |

  7. The value of ((-1+isqrt( 3))/(2))^(n) + (( -1-isqrt(3))/(2))^(n) where...

    Text Solution

    |

  8. If 1, omega, omega^(2) are the cube roots of unity, then ( 1+ omega) (...

    Text Solution

    |

  9. The modulus and principal argument of the complex number ( 1+ 2i)/( 1-...

    Text Solution

    |

  10. If |z+4| le 3, then the maximum value of |z+1| is :

    Text Solution

    |

  11. The number of roots of the equation z^(2) = 2 bar(z) is :

    Text Solution

    |

  12. If Re ((z-1)/(z+1)) =0 where z= x+iy is a complex number, then which o...

    Text Solution

    |

  13. The value of ((i+ sqrt 3)/2)^100+((i-sqrt3)/2)^100 is :

    Text Solution

    |

  14. What is the number of distinct solutions of the equation z^(2) + |z| =...

    Text Solution

    |

  15. What is omega^(100) + omega^(200) + omega^(300) equal to, where omega ...

    Text Solution

    |

  16. Let z(1), z(2) and z(3) be non zero complex numbers satisfying z^(2) +...

    Text Solution

    |

  17. Let z(1), z(2) and z(3) be non zero complex numbers satisfying z^(2) +...

    Text Solution

    |

  18. Let Z be a complex number satisfying | ( z-4)/( z-8)| =1 and | (z)/( ...

    Text Solution

    |

  19. Let Z be a complex number satisfying | ( z-4)/( z-8)| =1 and | (z)/( ...

    Text Solution

    |

  20. Suppose omega is a cube root of unity with omega cancel(=)1. Suppose...

    Text Solution

    |