Home
Class 14
MATHS
If | z - ( 4)/( z)| =2, then the maximum...

If `| z - ( 4)/( z)| =2`, then the maximum value o f `|z|` is equal to `:`

A

`1+ sqrt( 3)`

B

` 1+ sqrt( 5)`

C

`1- sqrt( 5)`

D

`sqrt( 5) -1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( | z - \frac{4}{z} | = 2 \) and find the maximum value of \( |z| \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ | z - \frac{4}{z} | = 2 \] Let \( |z| = r \). Then, we can express \( z \) in terms of \( r \): \[ |z| = r \implies |z - \frac{4}{z}| = |z| - |\frac{4}{z}| = r - \frac{4}{r} \] Thus, the equation becomes: \[ |r - \frac{4}{r}| = 2 \] ### Step 2: Set up inequalities This absolute value equation gives us two cases: 1. \( r - \frac{4}{r} = 2 \) 2. \( r - \frac{4}{r} = -2 \) ### Step 3: Solve the first case **Case 1:** \[ r - \frac{4}{r} = 2 \] Multiplying through by \( r \) (assuming \( r > 0 \)): \[ r^2 - 4 = 2r \implies r^2 - 2r - 4 = 0 \] Using the quadratic formula \( r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ r = \frac{2 \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (-4)}}{2 \cdot 1} = \frac{2 \pm \sqrt{4 + 16}}{2} = \frac{2 \pm \sqrt{20}}{2} \] \[ = 1 \pm \sqrt{5} \] Thus, we have two potential values for \( r \): \[ r_1 = 1 + \sqrt{5}, \quad r_2 = 1 - \sqrt{5} \quad (\text{discarded since } r > 0) \] ### Step 4: Solve the second case **Case 2:** \[ r - \frac{4}{r} = -2 \] Again, multiplying through by \( r \): \[ r^2 - 4 = -2r \implies r^2 + 2r - 4 = 0 \] Using the quadratic formula: \[ r = \frac{-2 \pm \sqrt{(2)^2 - 4 \cdot 1 \cdot (-4)}}{2 \cdot 1} = \frac{-2 \pm \sqrt{4 + 16}}{2} = \frac{-2 \pm \sqrt{20}}{2} \] \[ = -1 \pm \sqrt{5} \] Thus, we have two potential values for \( r \): \[ r_3 = -1 + \sqrt{5}, \quad r_4 = -1 - \sqrt{5} \quad (\text{discarded since } r > 0) \] ### Step 5: Determine maximum value of \( |z| \) Now we have two valid values for \( r \): 1. From Case 1: \( r = 1 + \sqrt{5} \) 2. From Case 2: \( r = -1 + \sqrt{5} \) To find the maximum value of \( |z| \): \[ \text{Maximum } |z| = \max(1 + \sqrt{5}, -1 + \sqrt{5}) \] Since \( 1 + \sqrt{5} > -1 + \sqrt{5} \), the maximum value is: \[ |z|_{\text{max}} = 1 + \sqrt{5} \] ### Final Answer The maximum value of \( |z| \) is \( 1 + \sqrt{5} \). ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|87 Videos
  • CIRCLE

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |21 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos

Similar Questions

Explore conceptually related problems

If |z-(4)/(z)|=2, then the maximum value of |z|

If |z-(4)/(z)|=2, then find the maximum value of |z|

If |z-(2)/(z)|=2, then the maximum value of |z|

If |z+(2)/(z)|=2 then the maximum value of |z| is

|z-(4)/(z)|=2, then find the maximum value of Iz |

If |z-(4)/(z)|=2, then the maximum value of |Z| is equal to (1)sqrt(3)+1 (2) (3) 2(4)quad 2+sqrt(2)

If |z+4|<=3 then the maximum value of |z+1| is

If |z^(2)-3|=3z then the maximum value of |z| is

PUNEET DOGRA-COMPLEX NUMBER-PREVIOUS YEAR QUESTIONS
  1. What is the value of the sum sum(n=2)^(11) ( i^(n) + i^(n+1)), where i...

    Text Solution

    |

  2. The smallest positive integer n for which ((1+i)/( 1-i))^(n) =1, is :

    Text Solution

    |

  3. If | z - ( 4)/( z)| =2, then the maximum value o f |z| is equal to :

    Text Solution

    |

  4. The value of i^(2n) + i^(2n+1) + i^(2n+2) + i^(2n+3), where i = sqrt( ...

    Text Solution

    |

  5. The value of ((-1+isqrt( 3))/(2))^(n) + (( -1-isqrt(3))/(2))^(n) where...

    Text Solution

    |

  6. If 1, omega, omega^(2) are the cube roots of unity, then ( 1+ omega) (...

    Text Solution

    |

  7. The modulus and principal argument of the complex number ( 1+ 2i)/( 1-...

    Text Solution

    |

  8. If |z+4| le 3, then the maximum value of |z+1| is :

    Text Solution

    |

  9. The number of roots of the equation z^(2) = 2 bar(z) is :

    Text Solution

    |

  10. If Re ((z-1)/(z+1)) =0 where z= x+iy is a complex number, then which o...

    Text Solution

    |

  11. The value of ((i+ sqrt 3)/2)^100+((i-sqrt3)/2)^100 is :

    Text Solution

    |

  12. What is the number of distinct solutions of the equation z^(2) + |z| =...

    Text Solution

    |

  13. What is omega^(100) + omega^(200) + omega^(300) equal to, where omega ...

    Text Solution

    |

  14. Let z(1), z(2) and z(3) be non zero complex numbers satisfying z^(2) +...

    Text Solution

    |

  15. Let z(1), z(2) and z(3) be non zero complex numbers satisfying z^(2) +...

    Text Solution

    |

  16. Let Z be a complex number satisfying | ( z-4)/( z-8)| =1 and | (z)/( ...

    Text Solution

    |

  17. Let Z be a complex number satisfying | ( z-4)/( z-8)| =1 and | (z)/( ...

    Text Solution

    |

  18. Suppose omega is a cube root of unity with omega cancel(=)1. Suppose...

    Text Solution

    |

  19. Suppose omega(1) and omega(2) are two distinct cube roots of unity dif...

    Text Solution

    |

  20. If z= x+ iy = ((1)/( sqrt( 2)) - ( i)/( sqrt( 2)))^(-25) , where i = s...

    Text Solution

    |