Home
Class 14
MATHS
The value of i^(2n) + i^(2n+1) + i^(2n+2...

The value of `i^(2n) + i^(2n+1) + i^(2n+2) + i^(2n+3)`, where `i = sqrt( -1)` is `:`

A

0

B

1

C

i

D

`-i`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( i^{2n} + i^{2n+1} + i^{2n+2} + i^{2n+3} \), where \( i = \sqrt{-1} \), we can follow these steps: ### Step 1: Identify the powers of \( i \) The powers of \( i \) cycle every four terms: - \( i^0 = 1 \) - \( i^1 = i \) - \( i^2 = -1 \) - \( i^3 = -i \) - \( i^4 = 1 \) (and the cycle repeats) ### Step 2: Simplify each term in the expression We can express each term in the given expression based on the value of \( n \): 1. \( i^{2n} \): Since \( 2n \) is even, \( i^{2n} = (-1)^n \). 2. \( i^{2n+1} \): This is \( i^{2n} \cdot i = (-1)^n \cdot i \). 3. \( i^{2n+2} \): This is \( i^{2n} \cdot i^2 = (-1)^n \cdot (-1) = -(-1)^n \). 4. \( i^{2n+3} \): This is \( i^{2n} \cdot i^3 = (-1)^n \cdot (-i) = -(-1)^n \cdot i \). ### Step 3: Combine the terms Now, we can combine all these terms: \[ i^{2n} + i^{2n+1} + i^{2n+2} + i^{2n+3} = (-1)^n + (-1)^n i - (-1)^n - (-1)^n i \] ### Step 4: Simplify the expression Notice that \( (-1)^n \) and \( -(-1)^n \) cancel each other out: \[ (-1)^n + (-1)^n i - (-1)^n - (-1)^n i = 0 \] ### Conclusion Thus, the value of \( i^{2n} + i^{2n+1} + i^{2n+2} + i^{2n+3} \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|87 Videos
  • CIRCLE

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |21 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos

Similar Questions

Explore conceptually related problems

The value of sum Sigma_(n=1)^(13) (i^n + i^(n+1)) where i= sqrt(-1) equals

The value of 1/(i^n) + 1/(i^(n + 3)) + 1/(i^(n + 2)) + 1/(i^(n + 1)) is :

Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n), where i=sqrt-1 and nEN.

What is the value of the sum sum_(n=2)^(11) (i^(n)+i^(n+1)), where i=sqrt(-1)?

Find the value of i^(n)+i^(n+1)+i^(n+2)+i^(n+3) for all n in N.

PUNEET DOGRA-COMPLEX NUMBER-PREVIOUS YEAR QUESTIONS
  1. The smallest positive integer n for which ((1+i)/( 1-i))^(n) =1, is :

    Text Solution

    |

  2. If | z - ( 4)/( z)| =2, then the maximum value o f |z| is equal to :

    Text Solution

    |

  3. The value of i^(2n) + i^(2n+1) + i^(2n+2) + i^(2n+3), where i = sqrt( ...

    Text Solution

    |

  4. The value of ((-1+isqrt( 3))/(2))^(n) + (( -1-isqrt(3))/(2))^(n) where...

    Text Solution

    |

  5. If 1, omega, omega^(2) are the cube roots of unity, then ( 1+ omega) (...

    Text Solution

    |

  6. The modulus and principal argument of the complex number ( 1+ 2i)/( 1-...

    Text Solution

    |

  7. If |z+4| le 3, then the maximum value of |z+1| is :

    Text Solution

    |

  8. The number of roots of the equation z^(2) = 2 bar(z) is :

    Text Solution

    |

  9. If Re ((z-1)/(z+1)) =0 where z= x+iy is a complex number, then which o...

    Text Solution

    |

  10. The value of ((i+ sqrt 3)/2)^100+((i-sqrt3)/2)^100 is :

    Text Solution

    |

  11. What is the number of distinct solutions of the equation z^(2) + |z| =...

    Text Solution

    |

  12. What is omega^(100) + omega^(200) + omega^(300) equal to, where omega ...

    Text Solution

    |

  13. Let z(1), z(2) and z(3) be non zero complex numbers satisfying z^(2) +...

    Text Solution

    |

  14. Let z(1), z(2) and z(3) be non zero complex numbers satisfying z^(2) +...

    Text Solution

    |

  15. Let Z be a complex number satisfying | ( z-4)/( z-8)| =1 and | (z)/( ...

    Text Solution

    |

  16. Let Z be a complex number satisfying | ( z-4)/( z-8)| =1 and | (z)/( ...

    Text Solution

    |

  17. Suppose omega is a cube root of unity with omega cancel(=)1. Suppose...

    Text Solution

    |

  18. Suppose omega(1) and omega(2) are two distinct cube roots of unity dif...

    Text Solution

    |

  19. If z= x+ iy = ((1)/( sqrt( 2)) - ( i)/( sqrt( 2)))^(-25) , where i = s...

    Text Solution

    |

  20. If z(1) and z(2) are complex numbers with | z(1)| = | z(2) |, then whi...

    Text Solution

    |