Home
Class 14
MATHS
The value of ((-1+isqrt( 3))/(2))^(n) + ...

The value of `((-1+isqrt( 3))/(2))^(n) + (( -1-isqrt(3))/(2))^(n)` where n is not a multiple of 3 and `i= sqrt(-1)` is `:`

A

A)1

B

B)`-1`

C

C)i

D

D)`-i`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\left(\frac{-1 + i\sqrt{3}}{2}\right)^n + \left(\frac{-1 - i\sqrt{3}}{2}\right)^n\) where \(n\) is not a multiple of 3 and \(i = \sqrt{-1}\), we can follow these steps: ### Step 1: Identify the complex numbers Let: \[ z_1 = \frac{-1 + i\sqrt{3}}{2} \] \[ z_2 = \frac{-1 - i\sqrt{3}}{2} \] ### Step 2: Convert to polar form To express \(z_1\) and \(z_2\) in polar form, we need to find their modulus and argument. **Modulus:** \[ |z_1| = \sqrt{\left(-\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1 \] \[ |z_2| = \sqrt{\left(-\frac{1}{2}\right)^2 + \left(-\frac{\sqrt{3}}{2}\right)^2} = \sqrt{1} = 1 \] **Argument:** For \(z_1\): \[ \theta_1 = \tan^{-1}\left(\frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}}\right) = \tan^{-1}(-\sqrt{3}) = \frac{2\pi}{3} \quad (\text{in the second quadrant}) \] For \(z_2\): \[ \theta_2 = \tan^{-1}\left(\frac{-\frac{\sqrt{3}}{2}}{-\frac{1}{2}}\right) = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3} \quad (\text{in the third quadrant}) \] ### Step 3: Write in polar form Thus, we can express: \[ z_1 = e^{i\frac{2\pi}{3}}, \quad z_2 = e^{-i\frac{2\pi}{3}} \] ### Step 4: Raise to the power \(n\) Now we compute: \[ z_1^n = \left(e^{i\frac{2\pi}{3}}\right)^n = e^{i\frac{2\pi n}{3}} \] \[ z_2^n = \left(e^{-i\frac{2\pi}{3}}\right)^n = e^{-i\frac{2\pi n}{3}} \] ### Step 5: Combine the results Now we can add these two results: \[ z_1^n + z_2^n = e^{i\frac{2\pi n}{3}} + e^{-i\frac{2\pi n}{3}} = 2\cos\left(\frac{2\pi n}{3}\right) \] ### Step 6: Determine the value based on \(n\) Since \(n\) is not a multiple of 3, \(\frac{2\pi n}{3}\) will not be an integer multiple of \(2\pi\), which means \(\cos\left(\frac{2\pi n}{3}\right)\) will not equal 1 or -1. Thus, the expression simplifies to: \[ 2\cos\left(\frac{2\pi n}{3}\right) \] ### Final Answer The value of the expression is: \[ 2\cos\left(\frac{2\pi n}{3}\right) \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|87 Videos
  • CIRCLE

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |21 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos

Similar Questions

Explore conceptually related problems

the value of ((-1+sqrt(3)i)/(2))^(3n)+((-1-sqrt(3)i)/(2))^(3n)=

What is the value of ((-1+i sqrt(3))/(2))^(3n)+((-1-i sqrt(3))/(2))^(3n), where i=sqrt(-1)?

What is the value of ((1=-+isqrt3)/(2))^(3n)+((-1+isqrt3)/(2))^(3n) where i=sqrt(-1) ?

Find the values of (1+isqrt(3))^(3)

For n=6k, k in z, ((1-isqrt(3))/(2))^(n)+((-1-isqrt(3))/(2))^(n) has the value

Show that ((-1+sqrt(3)i)/(2))^(n)+((-1-sqrt(3i))/(2))^(n) is equal to 2 when n is a multiple of 3 and 3 is equal to -1 when n is any other positive integer.

4.The value of ((1+isqrt3)/(1-isqrt3))^6 + ((1-isqrt3)/(1+isqrt3))^6

4.The value of ((1+isqrt3)/(1-isqrt3))^6 + ((1-isqrt3)/(1+isqrt3))^6

PUNEET DOGRA-COMPLEX NUMBER-PREVIOUS YEAR QUESTIONS
  1. If | z - ( 4)/( z)| =2, then the maximum value o f |z| is equal to :

    Text Solution

    |

  2. The value of i^(2n) + i^(2n+1) + i^(2n+2) + i^(2n+3), where i = sqrt( ...

    Text Solution

    |

  3. The value of ((-1+isqrt( 3))/(2))^(n) + (( -1-isqrt(3))/(2))^(n) where...

    Text Solution

    |

  4. If 1, omega, omega^(2) are the cube roots of unity, then ( 1+ omega) (...

    Text Solution

    |

  5. The modulus and principal argument of the complex number ( 1+ 2i)/( 1-...

    Text Solution

    |

  6. If |z+4| le 3, then the maximum value of |z+1| is :

    Text Solution

    |

  7. The number of roots of the equation z^(2) = 2 bar(z) is :

    Text Solution

    |

  8. If Re ((z-1)/(z+1)) =0 where z= x+iy is a complex number, then which o...

    Text Solution

    |

  9. The value of ((i+ sqrt 3)/2)^100+((i-sqrt3)/2)^100 is :

    Text Solution

    |

  10. What is the number of distinct solutions of the equation z^(2) + |z| =...

    Text Solution

    |

  11. What is omega^(100) + omega^(200) + omega^(300) equal to, where omega ...

    Text Solution

    |

  12. Let z(1), z(2) and z(3) be non zero complex numbers satisfying z^(2) +...

    Text Solution

    |

  13. Let z(1), z(2) and z(3) be non zero complex numbers satisfying z^(2) +...

    Text Solution

    |

  14. Let Z be a complex number satisfying | ( z-4)/( z-8)| =1 and | (z)/( ...

    Text Solution

    |

  15. Let Z be a complex number satisfying | ( z-4)/( z-8)| =1 and | (z)/( ...

    Text Solution

    |

  16. Suppose omega is a cube root of unity with omega cancel(=)1. Suppose...

    Text Solution

    |

  17. Suppose omega(1) and omega(2) are two distinct cube roots of unity dif...

    Text Solution

    |

  18. If z= x+ iy = ((1)/( sqrt( 2)) - ( i)/( sqrt( 2)))^(-25) , where i = s...

    Text Solution

    |

  19. If z(1) and z(2) are complex numbers with | z(1)| = | z(2) |, then whi...

    Text Solution

    |

  20. If the point z(1) = 1+ i, where i = sqrt( -1) is the reflection of a p...

    Text Solution

    |