Home
Class 14
MATHS
zbar(z) + ( 3-i) z+ ( 3+i) bar(z) + 1 =0...

`zbar(z) + ( 3-i) z+ ( 3+i) bar(z) + 1 =0` represent a circle with

A

Center `( -3,-1)` and radius 3

B

Center `( -3,1)` and radius 3

C

Center `( -3,-1)` and radius 4

D

Center `( -3,1)` and radius 4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \overline{z}(z) + (3-i)z + (3+i)\overline{z} + 1 = 0 \) and determine the center and radius of the circle it represents, we will follow these steps: ### Step 1: Substitute \( z \) and \( \overline{z} \) Assume \( z = x + iy \), where \( x \) and \( y \) are real numbers. Then, the conjugate \( \overline{z} = x - iy \). ### Step 2: Expand \( \overline{z}(z) \) Calculate \( \overline{z}(z) \): \[ \overline{z}(z) = (x - iy)(x + iy) = x^2 + y^2 \] ### Step 3: Expand the equation Substituting \( z \) and \( \overline{z} \) into the equation: \[ x^2 + y^2 + (3-i)(x + iy) + (3+i)(x - iy) + 1 = 0 \] ### Step 4: Expand \( (3-i)(z) \) and \( (3+i)(\overline{z}) \) Calculating \( (3-i)(z) \): \[ (3-i)(x + iy) = 3x + 3iy - ix - y = (3x - y) + i(3y - x) \] Calculating \( (3+i)(\overline{z}) \): \[ (3+i)(x - iy) = 3x - 3iy + ix - y = (3x - y) + i(-3y + x) \] ### Step 5: Combine real and imaginary parts Now combine all parts: \[ x^2 + y^2 + (3x - y) + (3x - y) + 1 = 0 \] The imaginary parts cancel out, so we only consider the real part: \[ x^2 + y^2 + 6x + 1 = 0 \] ### Step 6: Rearranging the equation Rearranging gives: \[ x^2 + y^2 + 6x + 1 = 0 \] To express it in standard form, we complete the square for \( x \): \[ (x^2 + 6x + 9) + y^2 - 9 + 1 = 0 \] This simplifies to: \[ (x + 3)^2 + y^2 - 8 = 0 \] or: \[ (x + 3)^2 + y^2 = 8 \] ### Step 7: Identify center and radius From the standard form \( (x - h)^2 + (y - k)^2 = r^2 \): - The center \( (h, k) = (-3, 0) \) - The radius \( r = \sqrt{8} = 2\sqrt{2} \) ### Final Answer The equation represents a circle with: - Center: \( (-3, 0) \) - Radius: \( 2\sqrt{2} \)
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|87 Videos
  • CIRCLE

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |21 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos

Similar Questions

Explore conceptually related problems

z bar(z)+(3-i)z+(3+i)bar(z)+1=0 represents a circle with

The equation zbarz+(4-3i)z+(4+3i)barz+5=0 represents a circle of radius

The equation z((2+1+i sqrt(3))/(z+1+i sqrt(3)))+bar(z)(z+1+i sqrt(3))=0 represents a circle with

If z=x+iy, then show that zbar(z)+2(z+bar(z))+a=0, where a in R represents a circle.

If z=x+iy, then show that zbar(z)+2(z+bar(z))+a=0, where a in R represent a circle.

PUNEET DOGRA-COMPLEX NUMBER-PREVIOUS YEAR QUESTIONS
  1. If z(1) and z(2) are complex numbers with | z(1)| = | z(2) |, then whi...

    Text Solution

    |

  2. If the point z(1) = 1+ i, where i = sqrt( -1) is the reflection of a p...

    Text Solution

    |

  3. zbar(z) + ( 3-i) z+ ( 3+i) bar(z) + 1 =0 represent a circle with

    Text Solution

    |

  4. If 1, omega and omega^(2) are the cube roots of unity, then the value ...

    Text Solution

    |

  5. If z = ( -2 ( 1+ 2i))/( ( 3+i)), where i = sqrt( -1), then the argumen...

    Text Solution

    |

  6. What is the square root of i, where, i = sqrt( -1) ?

    Text Solution

    |

  7. What is the real part of ( sin x + icos x )^(3), where i= sqrt( -1) ?

    Text Solution

    |

  8. (x^(3)-1) can be factorized as Where omega is one of the cube roots...

    Text Solution

    |

  9. What is ((sin ""(pi)/( 6) +i (1-cos""(pi)/(6)))/(sin""(pi)/(6)-i(1-cos...

    Text Solution

    |

  10. What is ((1+i)^(4n+5))/((1-i)^(4n+3)) equal to, where n is a natural n...

    Text Solution

    |

  11. What is ((sqrt(3) +i)/(sqrt(3)-i))^(6) equal to, where i = sqrt( -1) ?

    Text Solution

    |

  12. If z is a complex number such that |z| =4 and arg (z) = ( 5pi)/( 6), t...

    Text Solution

    |

  13. What is the argument of the complex number ((1+i)(2+i))/(3-i), where i...

    Text Solution

    |

  14. If P and Q are two complex numbers, then the modulus of the quotient o...

    Text Solution

    |

  15. Let z= x+iy, where x, y are real variable and i = sqrt(-1). If |2z -1|...

    Text Solution

    |

  16. If | z + bar(z)| = | z - bar(z)|, then the locus of z is

    Text Solution

    |

  17. What is one of the square roots of 3+4i, where i= sqrt(-1) ?

    Text Solution

    |

  18. What is the value of sqrt(-i), where i = sqrt( -1) ?

    Text Solution

    |

  19. What is the principle argument of ( -1-i) where i = sqrt( - 1).

    Text Solution

    |

  20. The modulus-argument form of sqrt( 3) + i, where i = sqrt( -1) is

    Text Solution

    |