Home
Class 14
MATHS
If z = ( -2 ( 1+ 2i))/( ( 3+i)), where i...

If `z = ( -2 ( 1+ 2i))/( ( 3+i))`, where `i = sqrt( -1)`, then the argument `theta ( - pi lt theta le pi )` of z is

A

A) `( 3pi )/( 4)`

B

B) `( pi )/( 4)`

C

C) `( 5pi )/( 6)`

D

D) `- (3pi)/( 4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the argument \( \theta \) of the complex number \( z = \frac{-2(1 + 2i)}{3 + i} \), we will follow these steps: ### Step 1: Simplify the expression for \( z \) We start with the expression: \[ z = \frac{-2(1 + 2i)}{3 + i} \] To simplify this, we multiply the numerator and the denominator by the conjugate of the denominator, which is \( 3 - i \): \[ z = \frac{-2(1 + 2i)(3 - i)}{(3 + i)(3 - i)} \] ### Step 2: Calculate the denominator The denominator is: \[ (3 + i)(3 - i) = 3^2 - i^2 = 9 - (-1) = 9 + 1 = 10 \] ### Step 3: Calculate the numerator Now, we calculate the numerator: \[ -2(1 + 2i)(3 - i) = -2[(1)(3) + (1)(-i) + (2i)(3) + (2i)(-i)] \] Calculating each term: - \( 1 \cdot 3 = 3 \) - \( 1 \cdot -i = -i \) - \( 2i \cdot 3 = 6i \) - \( 2i \cdot -i = -2i^2 = 2 \) (since \( i^2 = -1 \)) Combining these: \[ 3 - i + 6i + 2 = 5 + 5i \] Thus, the numerator becomes: \[ -2(5 + 5i) = -10 - 10i \] ### Step 4: Combine the results Now we can write \( z \): \[ z = \frac{-10 - 10i}{10} = -1 - i \] ### Step 5: Find the argument \( \theta \) The argument \( \theta \) of a complex number \( z = x + yi \) is given by: \[ \theta = \tan^{-1}\left(\frac{y}{x}\right) \] Here, \( x = -1 \) and \( y = -1 \): \[ \theta = \tan^{-1}\left(\frac{-1}{-1}\right) = \tan^{-1}(1) \] The angle whose tangent is 1 is \( \frac{\pi}{4} \), but since both \( x \) and \( y \) are negative, \( z \) is in the third quadrant. Therefore, we add \( \pi \) to \( \frac{\pi}{4} \): \[ \theta = \frac{\pi}{4} + \pi = \frac{5\pi}{4} \] ### Final Answer Thus, the argument \( \theta \) of \( z \) is: \[ \theta = \frac{5\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|87 Videos
  • CIRCLE

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |21 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos

Similar Questions

Explore conceptually related problems

If z=(-2(1+2i))/(3+i) where i=sqrt(-1) then argument theta(-pilt thetalepi) of z is

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If |z-2-i|=|z|sin((pi)/(4)-arg z)|, where i=sqrt(-1) ,then locus of z, is

Write the argument of (1+sqrt(3))(1+i)(cos theta+i sin theta)

" If "z=((1+i)(1+2i)(1+3i))/((1-i)(2-i)(3-i))" then the principal argument of "z"

If abs(z-2-i)=abs(z)abs(sin(pi/4-arg"z")) , where i=sqrt(-1) , then locus of z, is

PUNEET DOGRA-COMPLEX NUMBER-PREVIOUS YEAR QUESTIONS
  1. zbar(z) + ( 3-i) z+ ( 3+i) bar(z) + 1 =0 represent a circle with

    Text Solution

    |

  2. If 1, omega and omega^(2) are the cube roots of unity, then the value ...

    Text Solution

    |

  3. If z = ( -2 ( 1+ 2i))/( ( 3+i)), where i = sqrt( -1), then the argumen...

    Text Solution

    |

  4. What is the square root of i, where, i = sqrt( -1) ?

    Text Solution

    |

  5. What is the real part of ( sin x + icos x )^(3), where i= sqrt( -1) ?

    Text Solution

    |

  6. (x^(3)-1) can be factorized as Where omega is one of the cube roots...

    Text Solution

    |

  7. What is ((sin ""(pi)/( 6) +i (1-cos""(pi)/(6)))/(sin""(pi)/(6)-i(1-cos...

    Text Solution

    |

  8. What is ((1+i)^(4n+5))/((1-i)^(4n+3)) equal to, where n is a natural n...

    Text Solution

    |

  9. What is ((sqrt(3) +i)/(sqrt(3)-i))^(6) equal to, where i = sqrt( -1) ?

    Text Solution

    |

  10. If z is a complex number such that |z| =4 and arg (z) = ( 5pi)/( 6), t...

    Text Solution

    |

  11. What is the argument of the complex number ((1+i)(2+i))/(3-i), where i...

    Text Solution

    |

  12. If P and Q are two complex numbers, then the modulus of the quotient o...

    Text Solution

    |

  13. Let z= x+iy, where x, y are real variable and i = sqrt(-1). If |2z -1|...

    Text Solution

    |

  14. If | z + bar(z)| = | z - bar(z)|, then the locus of z is

    Text Solution

    |

  15. What is one of the square roots of 3+4i, where i= sqrt(-1) ?

    Text Solution

    |

  16. What is the value of sqrt(-i), where i = sqrt( -1) ?

    Text Solution

    |

  17. What is the principle argument of ( -1-i) where i = sqrt( - 1).

    Text Solution

    |

  18. The modulus-argument form of sqrt( 3) + i, where i = sqrt( -1) is

    Text Solution

    |

  19. In order to pass in an exam a student is required to get 975 marks. pr...

    Text Solution

    |

  20. The value of sum sum(n=1)^(13) ( i^(n) + i^(n+1)) where i= sqrt( -1) ,...

    Text Solution

    |