Home
Class 14
MATHS
What is ((sin ""(pi)/( 6) +i (1-cos""(pi...

What is `((sin ""(pi)/( 6) +i (1-cos""(pi)/(6)))/(sin""(pi)/(6)-i(1-cos""(pi)/(6))))^(3)` is equal to ?

A

1

B

`-1`

C

i

D

`-i`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \left( \frac{\sin\left(\frac{\pi}{6}\right) + i(1 - \cos\left(\frac{\pi}{6}\right))}{\sin\left(\frac{\pi}{6}\right) - i(1 - \cos\left(\frac{\pi}{6}\right))} \right)^3 \] ### Step 1: Calculate \(\sin\left(\frac{\pi}{6}\right)\) and \(\cos\left(\frac{\pi}{6}\right)\) Using known values: \[ \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \] \[ \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \] ### Step 2: Substitute these values into the expression Substituting the values into the expression gives: \[ \frac{\frac{1}{2} + i\left(1 - \frac{\sqrt{3}}{2}\right)}{\frac{1}{2} - i\left(1 - \frac{\sqrt{3}}{2}\right)} \] ### Step 3: Simplify the numerator and denominator The numerator simplifies to: \[ \frac{1}{2} + i\left(1 - \frac{\sqrt{3}}{2}\right) = \frac{1}{2} + i\left(\frac{2 - \sqrt{3}}{2}\right) = \frac{1 + i(2 - \sqrt{3})}{2} \] The denominator simplifies to: \[ \frac{1}{2} - i\left(1 - \frac{\sqrt{3}}{2}\right) = \frac{1}{2} - i\left(\frac{2 - \sqrt{3}}{2}\right) = \frac{1 - i(2 - \sqrt{3})}{2} \] ### Step 4: Rewrite the expression Now we can rewrite the expression: \[ \frac{\frac{1 + i(2 - \sqrt{3})}{2}}{\frac{1 - i(2 - \sqrt{3})}{2}} = \frac{1 + i(2 - \sqrt{3})}{1 - i(2 - \sqrt{3})} \] ### Step 5: Multiply numerator and denominator by the conjugate of the denominator To simplify further, multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{(1 + i(2 - \sqrt{3}))(1 + i(2 - \sqrt{3}))}{(1 - i(2 - \sqrt{3}))(1 + i(2 - \sqrt{3}))} \] ### Step 6: Simplify the denominator The denominator simplifies to: \[ 1^2 + (2 - \sqrt{3})^2 = 1 + (4 - 4\sqrt{3} + 3) = 8 - 4\sqrt{3} \] ### Step 7: Expand the numerator The numerator expands to: \[ (1 + i(2 - \sqrt{3}))^2 = 1 + 2i(2 - \sqrt{3}) - (2 - \sqrt{3})^2 = 1 + 2i(2 - \sqrt{3}) - (4 - 4\sqrt{3} + 3) = -6 + 4\sqrt{3} + 2i(2 - \sqrt{3}) \] ### Step 8: Combine and simplify Now we have: \[ \frac{-6 + 4\sqrt{3} + 2i(2 - \sqrt{3})}{8 - 4\sqrt{3}} \] ### Step 9: Evaluate the cube of the expression To find the cube of this expression, we can convert it to polar form and apply De Moivre's theorem. However, we can also use the fact that the expression simplifies to \(e^{i\theta}\) for some angle \(\theta\). ### Step 10: Final evaluation After evaluating the angle, we find that: \[ \left( e^{i\frac{\pi}{2}} \right)^3 = e^{i\frac{3\pi}{2}} = -i \] Thus, the final answer is: \[ \boxed{-i} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|87 Videos
  • CIRCLE

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |21 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos

Similar Questions

Explore conceptually related problems

What is [((sin(pi))/(6)+i(1-cos((pi)/(6))))/((sin(pi))/(6)+-(1-cos((pi)/(6))))]^(3) where i=sqrt(-1) equal to

(sin((pi)/(10))+sin(13(pi)/(10)))(cos^(2)((pi)/(6))-cos^(2)((pi)/(10))) is equal to

The value of (1)/(sqrt(2))"sin"(pi)/(6)"cos"(pi)/(4)-"cot"(pi)/(3)"sec"(pi)/(6)+(5"tan"(pi)/(4))/("12sin"(pi)/(2)) is equal to

sin((7 pi)/(4))*cos((7 pi)/(6))*tan((3 pi)/(4))*cot((11 pi)/(6)) is equal to

Calculate 4 sin (1+(pi)/(6)) cos (1+(pi)/(3))

The value of sin^(-1)(sin""(2pi)/(3))+cos^(-1)(cos""(7pi)/(6)) is

The value of (1+cos((pi)/(6)))(1+cos((pi)/(3)))(1+cos((2 pi)/(3)))(1+cos((7 pi)/(6)))=

sin((pi)/(6)+cos^(-1)((1)/(4)) )

The value of sum_(k=1)^(13) (1)/(sin((pi)/(4)+((k-1)pi)/(6))sin((pi)/(4)+(kpi)/(6))) is equals to :

Prove that: 2(sin pi)/(6)sec(pi)/(3)-4(sin(5 pi))/(6)(cos pi)/(4)=1

PUNEET DOGRA-COMPLEX NUMBER-PREVIOUS YEAR QUESTIONS
  1. What is the real part of ( sin x + icos x )^(3), where i= sqrt( -1) ?

    Text Solution

    |

  2. (x^(3)-1) can be factorized as Where omega is one of the cube roots...

    Text Solution

    |

  3. What is ((sin ""(pi)/( 6) +i (1-cos""(pi)/(6)))/(sin""(pi)/(6)-i(1-cos...

    Text Solution

    |

  4. What is ((1+i)^(4n+5))/((1-i)^(4n+3)) equal to, where n is a natural n...

    Text Solution

    |

  5. What is ((sqrt(3) +i)/(sqrt(3)-i))^(6) equal to, where i = sqrt( -1) ?

    Text Solution

    |

  6. If z is a complex number such that |z| =4 and arg (z) = ( 5pi)/( 6), t...

    Text Solution

    |

  7. What is the argument of the complex number ((1+i)(2+i))/(3-i), where i...

    Text Solution

    |

  8. If P and Q are two complex numbers, then the modulus of the quotient o...

    Text Solution

    |

  9. Let z= x+iy, where x, y are real variable and i = sqrt(-1). If |2z -1|...

    Text Solution

    |

  10. If | z + bar(z)| = | z - bar(z)|, then the locus of z is

    Text Solution

    |

  11. What is one of the square roots of 3+4i, where i= sqrt(-1) ?

    Text Solution

    |

  12. What is the value of sqrt(-i), where i = sqrt( -1) ?

    Text Solution

    |

  13. What is the principle argument of ( -1-i) where i = sqrt( - 1).

    Text Solution

    |

  14. The modulus-argument form of sqrt( 3) + i, where i = sqrt( -1) is

    Text Solution

    |

  15. In order to pass in an exam a student is required to get 975 marks. pr...

    Text Solution

    |

  16. The value of sum sum(n=1)^(13) ( i^(n) + i^(n+1)) where i= sqrt( -1) ,...

    Text Solution

    |

  17. If A+iB where i= sqrt(-1) then what is the value of A ?

    Text Solution

    |

  18. If Z= - bar(Z) , then which one of the following is correct?

    Text Solution

    |

  19. If z = ( 1+ 2i)/( 2-i) - ( 2-i)/( 1+ 2i), then what is the value of z^...

    Text Solution

    |

  20. The smallest positive integral value of n for which ((1-i)/( 1+i))^(n)...

    Text Solution

    |