Home
Class 14
MATHS
If z = ( 1+ 2i)/( 2-i) - ( 2-i)/( 1+ 2i)...

If `z = ( 1+ 2i)/( 2-i) - ( 2-i)/( 1+ 2i)`, then what is the value of `z^(2) + zbar(z) `? `( i = sqrt( -1))`

A

A. 0

B

B.`-1`

C

C. 1

D

D. 8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( z = \frac{1 + 2i}{2 - i} - \frac{2 - i}{1 + 2i} \) and then find \( z^2 + z \bar{z} \). ### Step 1: Simplify \( z \) We start with the expression for \( z \): \[ z = \frac{1 + 2i}{2 - i} - \frac{2 - i}{1 + 2i} \] To combine these two fractions, we need a common denominator. The common denominator will be the product of the two denominators: \[ (2 - i)(1 + 2i) \] ### Step 2: Calculate the numerator Now we calculate the numerator: \[ \text{Numerator} = (1 + 2i)(1 + 2i) - (2 - i)(2 - i) \] Calculating \( (1 + 2i)(1 + 2i) \): \[ (1 + 2i)^2 = 1^2 + 2 \cdot 1 \cdot 2i + (2i)^2 = 1 + 4i - 4 = -3 + 4i \] Now calculating \( (2 - i)(2 - i) \): \[ (2 - i)^2 = 2^2 - 2 \cdot 2 \cdot i + (-i)^2 = 4 - 4i - 1 = 3 - 4i \] Now substituting back into the numerator: \[ \text{Numerator} = (-3 + 4i) - (3 - 4i) = -3 + 4i - 3 + 4i = -6 + 8i \] ### Step 3: Calculate the denominator Now we calculate the denominator: \[ \text{Denominator} = (2 - i)(1 + 2i) = 2 + 4i - i - 2 = 2 + 3i \] ### Step 4: Combine the fractions Now we have: \[ z = \frac{-6 + 8i}{2 + 3i} \] To simplify this, we multiply the numerator and the denominator by the conjugate of the denominator: \[ z = \frac{(-6 + 8i)(2 - 3i)}{(2 + 3i)(2 - 3i)} \] Calculating the denominator: \[ (2 + 3i)(2 - 3i) = 4 + 9 = 13 \] Calculating the numerator: \[ (-6 + 8i)(2 - 3i) = -12 + 18i + 16i + 24 = 12 + 34i \] Thus, \[ z = \frac{12 + 34i}{13} = \frac{12}{13} + \frac{34}{13}i \] ### Step 5: Calculate \( z^2 \) Now we need to calculate \( z^2 \): \[ z^2 = \left(\frac{12}{13} + \frac{34}{13}i\right)^2 = \left(\frac{12^2}{13^2} + 2 \cdot \frac{12}{13} \cdot \frac{34}{13}i + \left(\frac{34}{13}i\right)^2\right) \] Calculating each term: \[ \frac{12^2}{13^2} = \frac{144}{169}, \quad 2 \cdot \frac{12}{13} \cdot \frac{34}{13}i = \frac{816}{169}i, \quad \left(\frac{34}{13}i\right)^2 = -\frac{1156}{169} \] So, \[ z^2 = \frac{144 - 1156}{169} + \frac{816}{169}i = \frac{-1012}{169} + \frac{816}{169}i \] ### Step 6: Calculate \( z \bar{z} \) Next, we calculate \( z \bar{z} \): \[ \bar{z} = \frac{12}{13} - \frac{34}{13}i \] Thus, \[ z \bar{z} = \left(\frac{12}{13} + \frac{34}{13}i\right)\left(\frac{12}{13} - \frac{34}{13}i\right) = \frac{12^2 + 34^2}{13^2} = \frac{144 + 1156}{169} = \frac{1300}{169} \] ### Step 7: Combine \( z^2 + z \bar{z} \) Finally, we combine: \[ z^2 + z \bar{z} = \left(\frac{-1012}{169} + \frac{816}{169}i\right) + \frac{1300}{169} = \frac{-1012 + 1300}{169} + \frac{816}{169}i = \frac{288}{169} + \frac{816}{169}i \] ### Final Answer The final value of \( z^2 + z \bar{z} \) is: \[ \frac{288}{169} + \frac{816}{169}i \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|87 Videos
  • CIRCLE

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |21 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos

Similar Questions

Explore conceptually related problems

If z=(1+2i)/(2-i)-(2-i)/(1+2i), then what is the value of z^(2)+zbarz (i=sqrt(-1))

If z=(1+i)/(sqrt(2)), then the value of z^(1929) is

If z = (-2)/(1 + sqrt(3i)) , then the value of age z is

| z | -z = 1 + 2i

If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|

If Z=1+i , where i=sqrt(-1) , then what is the modulus of Z+(2)/(Z) ?

If z= 1/((1+i)(1-2i)) , then |z| is

If z=(1)/(2)(i sqrt(3)-1), then find the value of (z-z^(2)+2z^(3))(2-z+z^(2))

If z = i(i + sqrt(2)) , then value of z^(4) + 4z^(3) + 6z^(2) + 4z is

PUNEET DOGRA-COMPLEX NUMBER-PREVIOUS YEAR QUESTIONS
  1. If A+iB where i= sqrt(-1) then what is the value of A ?

    Text Solution

    |

  2. If Z= - bar(Z) , then which one of the following is correct?

    Text Solution

    |

  3. If z = ( 1+ 2i)/( 2-i) - ( 2-i)/( 1+ 2i), then what is the value of z^...

    Text Solution

    |

  4. The smallest positive integral value of n for which ((1-i)/( 1+i))^(n)...

    Text Solution

    |

  5. If z= 1+i tan alpha where pi lt alpha lt ( 3pi)/( 2), then what is |z|...

    Text Solution

    |

  6. What is the argument of ( 1- sin theta ) + icos theta ? ( i=sqrt(-1)...

    Text Solution

    |

  7. If z= 1+ cos ""(pi)/( 5) + isin""(pi)/(5), then what is |z| is equal t...

    Text Solution

    |

  8. What is the modulus of (1)/(1+3i) - ( 1)/( 1-3i) ?

    Text Solution

    |

  9. If omega is the imaginary cube root of unity, then what is ( 2 -omega ...

    Text Solution

    |

  10. What are the square roots of -2i? ( i=sqrt(-1))

    Text Solution

    |

  11. What is the conjugate of ((1+2i)/(2+i))^(2) ?

    Text Solution

    |

  12. What is the value of 1+i^(2) +i^(4) + i^(6) +"………"i^(100), where i=sqr...

    Text Solution

    |

  13. If omega is a complex cube root of unity, then what is omega^(10) + om...

    Text Solution

    |

  14. What is ((sqrt(3) +i)/(sqrt(3)-i))^(6) equal to, where i = sqrt( -1) ?

    Text Solution

    |

  15. What is the modulus of | (1+2i)/(1-(1-i)^(2))| ?

    Text Solution

    |

  16. What is the value of ((i+sqrt(3))/(-i+sqrt(3)))^(200)+((i-sqrt(3))/(i+...

    Text Solution

    |

  17. If x^(2) + y^(2) =1, then what is ( 1+x+ iy)/( 1+x-iy) equal to ?

    Text Solution

    |

  18. What is the modulus of ( 1+2i)/( 1- ( 1+i)^(2)) equal to ?

    Text Solution

    |

  19. What is the value of ( - sqrt( -1) )^(4n+3 ) + ( i^(41) + i^(-257)), w...

    Text Solution

    |

  20. If alpha is a complex number such that alpha^(2) + alpha + 1 =0, then ...

    Text Solution

    |