Home
Class 14
MATHS
What is the value of ((i+sqrt(3))/(-i+sq...

What is the value of `((i+sqrt(3))/(-i+sqrt(3)))^(200)+((i-sqrt(3))/(i+sqrt(3)))^(200) +1` ?

A

A)`-1`

B

B)0

C

C)1

D

D)2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \left(\frac{i + \sqrt{3}}{-i + \sqrt{3}}\right)^{200} + \left(\frac{i - \sqrt{3}}{i + \sqrt{3}}\right)^{200} + 1, \] we will follow these steps: ### Step 1: Simplify the first term We start with the first term: \[ \frac{i + \sqrt{3}}{-i + \sqrt{3}}. \] To simplify this, we multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{(i + \sqrt{3})(-i + \sqrt{3})}{(-i + \sqrt{3})(-i + \sqrt{3})}. \] Calculating the denominator: \[ (-i + \sqrt{3})(-i + \sqrt{3}) = (-i)^2 + 2(-i)(\sqrt{3}) + (\sqrt{3})^2 = 1 - 2i\sqrt{3} + 3 = 4 - 2i\sqrt{3}. \] Now for the numerator: \[ (i + \sqrt{3})(-i + \sqrt{3}) = -i^2 + i\sqrt{3} - i\sqrt{3} + 3 = 1 + 3 = 4. \] Thus, we have: \[ \frac{4}{4 - 2i\sqrt{3}}. \] ### Step 2: Rationalize the first term Next, we rationalize: \[ \frac{4}{4 - 2i\sqrt{3}} \cdot \frac{4 + 2i\sqrt{3}}{4 + 2i\sqrt{3}} = \frac{16 + 8i\sqrt{3}}{16 + 12} = \frac{16 + 8i\sqrt{3}}{28} = \frac{4 + 2i\sqrt{3}}{7}. \] ### Step 3: Simplify the second term Now we simplify the second term: \[ \frac{i - \sqrt{3}}{i + \sqrt{3}}. \] Again, we multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{(i - \sqrt{3})(i - \sqrt{3})}{(i + \sqrt{3})(i - \sqrt{3})}. \] Calculating the denominator: \[ (i + \sqrt{3})(i - \sqrt{3}) = i^2 - (\sqrt{3})^2 = -1 - 3 = -4. \] Now for the numerator: \[ (i - \sqrt{3})(i - \sqrt{3}) = i^2 - 2i\sqrt{3} + 3 = -1 - 2i\sqrt{3} + 3 = 2 - 2i\sqrt{3}. \] Thus, we have: \[ \frac{2 - 2i\sqrt{3}}{-4} = -\frac{1 - i\sqrt{3}}{2}. \] ### Step 4: Combine the terms Now we have: \[ \left(\frac{4 + 2i\sqrt{3}}{7}\right)^{200} + \left(-\frac{1 - i\sqrt{3}}{2}\right)^{200} + 1. \] Let \( \omega = \frac{4 + 2i\sqrt{3}}{7} \) and \( \omega^2 = -\frac{1 - i\sqrt{3}}{2} \). ### Step 5: Evaluate the powers Since \( \omega \) and \( \omega^2 \) are roots of unity, we can express them in terms of \( \omega \) and \( \omega^2 \): \[ \omega^{200} + \omega^{400} + 1. \] Using the properties of roots of unity, we find: \[ \omega^{200} = \omega^{0} = 1 \quad \text{and} \quad \omega^{400} = \omega^{0} = 1. \] ### Step 6: Final evaluation Thus, we have: \[ 1 + 1 + 1 = 3. \] ### Conclusion The final value of the expression is: \[ \boxed{3}. \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|87 Videos
  • CIRCLE

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |21 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos

Similar Questions

Explore conceptually related problems

The value of (1+i sqrt(3))

What is the value of ((i+sqrt3)/(-i+sqrt3))^(200)+((i-sqrt3)/(i+sqrt3))^(200)+1 ?

the value of ((1+i sqrt(3))/(1-i sqrt(3)))^(6)+((1-i sqrt(3))/(1+i sqrt(3)))^(6) is

log((1+i sqrt(3))/(1-i sqrt(3)))

Prove that ((i-sqrt(3))/(-i+sqrt(3)))^(200)+((i-sqrt(3))/(i+sqrt(3)))^(200)=-1

The value of (1+i sqrt(3))^2 =

The value of ((1+sqrt(3)i)/(1-sqrt(3)i))^(64)+((1-sqrt(3)i)/(1+sqrt(3)i))^(64) is

The value of (1+i sqrt(3))^(3)=

Prove that [(i+sqrt(3))/(-i+sqrt(3))]^(100)+[(i-sqrt(3))/(i+sqrt(3))]^(100)=-1

If i=sqrt(-1) then ((i+sqrt(3))/(-i+sqrt(3)))^(52722)+((i-sqrt(3))/(i+sqrt(3)))^(43006)=

PUNEET DOGRA-COMPLEX NUMBER-PREVIOUS YEAR QUESTIONS
  1. What is the value of 1+i^(2) +i^(4) + i^(6) +"………"i^(100), where i=sqr...

    Text Solution

    |

  2. If omega is a complex cube root of unity, then what is omega^(10) + om...

    Text Solution

    |

  3. What is ((sqrt(3) +i)/(sqrt(3)-i))^(6) equal to, where i = sqrt( -1) ?

    Text Solution

    |

  4. What is the modulus of | (1+2i)/(1-(1-i)^(2))| ?

    Text Solution

    |

  5. What is the value of ((i+sqrt(3))/(-i+sqrt(3)))^(200)+((i-sqrt(3))/(i+...

    Text Solution

    |

  6. If x^(2) + y^(2) =1, then what is ( 1+x+ iy)/( 1+x-iy) equal to ?

    Text Solution

    |

  7. What is the modulus of ( 1+2i)/( 1- ( 1+i)^(2)) equal to ?

    Text Solution

    |

  8. What is the value of ( - sqrt( -1) )^(4n+3 ) + ( i^(41) + i^(-257)), w...

    Text Solution

    |

  9. If alpha is a complex number such that alpha^(2) + alpha + 1 =0, then ...

    Text Solution

    |

  10. If omega is the cube root of unity , then what is the conjugate of 2 o...

    Text Solution

    |

  11. What is ( sqrt( 3) + i) // ( 1 + sqrt( 3)i) equal to ?

    Text Solution

    |

  12. If 2x =3+5i, then what is the 2x^(3) + 2x^(2) - 7x + 72 ?

    Text Solution

    |

  13. Match List I with List II and select the correct answer using the code...

    Text Solution

    |

  14. For positive whole number of n, what is the value of i^(4n+1) ?

    Text Solution

    |

  15. If omega is complex cube root, then what is the value of 1- ( 1)/( ( 1...

    Text Solution

    |

  16. A straight line is passing through the points represented by the compl...

    Text Solution

    |

  17. Which one of the following is correct ? If z and w are complex numbers...

    Text Solution

    |

  18. What is the square root of (1)/(2) - i(sqrt(3))/(2) ?

    Text Solution

    |

  19. Let C be the set of complex number and z(1), z(2) are in C. I. are(z...

    Text Solution

    |

  20. If 1, omega and omega^(2) are the three cube roots of unity, then wha...

    Text Solution

    |