Home
Class 14
MATHS
If x^(2)+((1)/(x^(2)))=1, then what is t...

If `x^(2)+((1)/(x^(2)))=1`, then what is the value of `x^(48)+x^(42)+x^(36)+x^(30)+x^(24)+x^(18)+x^(12)+x^(8)+1?`

A

`-9`

B

`0`

C

`1`

D

`9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^2 + \frac{1}{x^2} = 1 \) and find the value of \( x^{48} + x^{42} + x^{36} + x^{30} + x^{24} + x^{18} + x^{12} + x^{8} + 1 \), we can proceed as follows: ### Step 1: Simplify the given equation We start with the equation: \[ x^2 + \frac{1}{x^2} = 1 \] We can rewrite this as: \[ x^2 + \frac{1}{x^2} - 1 = 0 \] Let \( y = x + \frac{1}{x} \). Then we know that: \[ x^2 + \frac{1}{x^2} = y^2 - 2 \] Thus, we can substitute: \[ y^2 - 2 = 1 \implies y^2 = 3 \implies y = \sqrt{3} \text{ or } y = -\sqrt{3} \] ### Step 2: Find \( x + \frac{1}{x} \) From our previous step, we have: \[ x + \frac{1}{x} = \sqrt{3} \text{ or } x + \frac{1}{x} = -\sqrt{3} \] ### Step 3: Find \( x^3 + \frac{1}{x^3} \) Using the identity: \[ x^3 + \frac{1}{x^3} = (x + \frac{1}{x})^3 - 3(x + \frac{1}{x}) \] Substituting \( y = \sqrt{3} \): \[ x^3 + \frac{1}{x^3} = (\sqrt{3})^3 - 3\sqrt{3} = 3\sqrt{3} - 3\sqrt{3} = 0 \] ### Step 4: Find \( x^6 + \frac{1}{x^6} \) Using the identity: \[ x^6 + \frac{1}{x^6} = (x^3 + \frac{1}{x^3})^2 - 2 \] Substituting \( x^3 + \frac{1}{x^3} = 0 \): \[ x^6 + \frac{1}{x^6} = 0^2 - 2 = -2 \] ### Step 5: Find \( x^{12} + \frac{1}{x^{12}} \) Using the same identity: \[ x^{12} + \frac{1}{x^{12}} = (x^6 + \frac{1}{x^6})^2 - 2 \] Substituting \( x^6 + \frac{1}{x^6} = -2 \): \[ x^{12} + \frac{1}{x^{12}} = (-2)^2 - 2 = 4 - 2 = 2 \] ### Step 6: Find \( x^{24} + \frac{1}{x^{24}} \) Using the same identity: \[ x^{24} + \frac{1}{x^{24}} = (x^{12} + \frac{1}{x^{12}})^2 - 2 \] Substituting \( x^{12} + \frac{1}{x^{12}} = 2 \): \[ x^{24} + \frac{1}{x^{24}} = 2^2 - 2 = 4 - 2 = 2 \] ### Step 7: Find \( x^{48} + \frac{1}{x^{48}} \) Using the same identity: \[ x^{48} + \frac{1}{x^{48}} = (x^{24} + \frac{1}{x^{24}})^2 - 2 \] Substituting \( x^{24} + \frac{1}{x^{24}} = 2 \): \[ x^{48} + \frac{1}{x^{48}} = 2^2 - 2 = 4 - 2 = 2 \] ### Step 8: Calculate the final expression Now we can calculate: \[ x^{48} + x^{42} + x^{36} + x^{30} + x^{24} + x^{18} + x^{12} + x^{8} + 1 \] We know: - \( x^{48} + \frac{1}{x^{48}} = 2 \) - \( x^{42} + \frac{1}{x^{42}} = 0 \) (since \( x^{42} = x^{36} \cdot x^6 \) and \( x^{36} + \frac{1}{x^{36}} = 2 \)) - \( x^{36} + \frac{1}{x^{36}} = 2 \) - \( x^{30} + \frac{1}{x^{30}} = 0 \) - \( x^{24} + \frac{1}{x^{24}} = 2 \) - \( x^{18} + \frac{1}{x^{18}} = 0 \) - \( x^{12} + \frac{1}{x^{12}} = 2 \) - \( x^{8} + \frac{1}{x^{8}} = 0 \) - \( 1 = 1 \) Adding these values: \[ 2 + 0 + 2 + 0 + 2 + 0 + 2 + 0 + 1 = 9 \] ### Final Answer Thus, the value of \( x^{48} + x^{42} + x^{36} + x^{30} + x^{24} + x^{18} + x^{12} + x^{8} + 1 \) is \( \boxed{9} \).
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -IV|198 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Test Yourself|25 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

If x^(2) + ((1)/(x^(2))) =1 , then what is the value of x^(48) + x^(42) + x^(36) + x^(30) + x^(24) + x^(18) + x^(12) + x^(6) + 1 ?

If x^((1)/(12))=219^((1)/(24)), what is the value of X?

If x^((1)/(12))=219^((1)/(24)) what is the value of x?

If x+(1)/(x)=5 then what is the value of (x^(4)+(1)/(x^(2)))/(x^(2)-3x+1) ?

If (x+(1)/(x))^(2)=3 then find the value of x^(206)+x^(206)+x^(90)+x^(84)+x^(18)+x^(12)+x^(8)+1

If x+(1)/(x)=17 , what is the value of (x^(4)+(1)/(x^(2)))/(x^(2)-3x+1) ?

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -II
  1. Evaluate : 16sqrt((3)/(4))-9sqrt((4)/(3)) if sqrt(12)=3.46

    Text Solution

    |

  2. If sqrt(2)=1.4142, find the value of 2sqrt(2)+sqrt(2)+(1)/(2+sqrt(2))+...

    Text Solution

    |

  3. If sqrt(3)=1.732, then the value of (9+2sqrt(3))/(sqrt(3)) is

    Text Solution

    |

  4. If sqrt(2)=1.4142… is given, then the value of (7)/((3+sqrt(2))) corre...

    Text Solution

    |

  5. If sqrt(5329)=73, then the value of sqrt(5329)+sqrt(53.29)+sqrt(0.5329...

    Text Solution

    |

  6. If sqrt(33)=5.745, then the value of sqrt((3)/(11) is approximately

    Text Solution

    |

  7. If x=3-2sqrt(2) , then sqrt(x)+((1)/(sqrt(x))) is equal to

    Text Solution

    |

  8. If x+((1)/(x))=sqrt(13), then what is the value of x^(5)-((1)/(x^(5)))...

    Text Solution

    |

  9. If x^((1)/(4))+x^((-1)/(4))=2, then what is the value of x^(81)+((1)/(...

    Text Solution

    |

  10. If x^(2)+((1)/(x^(2)))=1, then what is the value of x^(48)+x^(42)+x^(3...

    Text Solution

    |

  11. If x=(4sqrt(2))/(sqrt(2)+1), then find the value of (x+2)/(x-2)-(x+2sq...

    Text Solution

    |

  12. If x+((1)/(x))=2, then what is the value of x^(31)+((1)/(x^(1331))) ?

    Text Solution

    |

  13. If sqrt(5x-6)+sqrt(5x+6)=6, then what is the value of x ?

    Text Solution

    |

  14. If x=sqrt((2+sqrt(3))/(2-sqrt(3))), then what is the value of (x^(2)+x...

    Text Solution

    |

  15. If P=7+4sqrt(3) and PQ=1, then what is the value of (1)/(P^(2))+(1)/(Q...

    Text Solution

    |

  16. If x=5+2sqrt(6), then what is the value of (sqrt(x)+(1)/(sqrt(x))) ?

    Text Solution

    |

  17. If 9^(x)=root11(243), then what is the value of x ?

    Text Solution

    |

  18. If sqrt(21)= 4.58 , what is the simplified value of (8sqrt((3)/(7))-3s...

    Text Solution

    |

  19. If sqrt(3)=1.732, then what is the value of (sqrt(3)-(10)/(sqrt(3))+sq...

    Text Solution

    |

  20. If sqrt(y)=sqrt(4)-sqrt(6), then find the value of (y^(2)-20y+12).

    Text Solution

    |