Home
Class 14
MATHS
If a=7-4sqrt(3) , the value of a^((1)/(2...

If `a=7-4sqrt(3)` , the value of `a^((1)/(2))+a^(-(1)/(2))` is

A

`3sqrt(3)`

B

`4`

C

`7`

D

`2sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a^{\frac{1}{2}} + a^{-\frac{1}{2}} \) where \( a = 7 - 4\sqrt{3} \). ### Step-by-Step Solution: 1. **Identify the expression**: We are given \( a = 7 - 4\sqrt{3} \). We need to find \( \sqrt{a} + \frac{1}{\sqrt{a}} \). 2. **Calculate \( \sqrt{a} \)**: \[ \sqrt{a} = \sqrt{7 - 4\sqrt{3}} \] To simplify this expression, we can assume \( \sqrt{a} = \sqrt{x} - \sqrt{y} \) where \( x \) and \( y \) are numbers we need to determine. 3. **Square both sides**: \[ a = (\sqrt{x} - \sqrt{y})^2 = x + y - 2\sqrt{xy} \] We want this to equal \( 7 - 4\sqrt{3} \). This gives us the equations: \[ x + y = 7 \quad \text{(1)} \] \[ -2\sqrt{xy} = -4\sqrt{3} \quad \Rightarrow \quad \sqrt{xy} = 2\sqrt{3} \quad \Rightarrow \quad xy = 12 \quad \text{(2)} \] 4. **Solve the system of equations**: From equations (1) and (2): - \( x + y = 7 \) - \( xy = 12 \) Let \( x \) and \( y \) be the roots of the quadratic equation: \[ t^2 - (x+y)t + xy = 0 \quad \Rightarrow \quad t^2 - 7t + 12 = 0 \] We can find the roots using the quadratic formula: \[ t = \frac{7 \pm \sqrt{7^2 - 4 \cdot 12}}{2} = \frac{7 \pm \sqrt{49 - 48}}{2} = \frac{7 \pm 1}{2} \] This gives us: \[ t = 4 \quad \text{or} \quad t = 3 \] Thus, \( x = 4 \) and \( y = 3 \). 5. **Find \( \sqrt{a} \)**: \[ \sqrt{a} = \sqrt{4} - \sqrt{3} = 2 - \sqrt{3} \] 6. **Calculate \( \frac{1}{\sqrt{a}} \)**: \[ \frac{1}{\sqrt{a}} = \frac{1}{2 - \sqrt{3}} \] To rationalize the denominator, multiply by the conjugate: \[ \frac{1}{2 - \sqrt{3}} \cdot \frac{2 + \sqrt{3}}{2 + \sqrt{3}} = \frac{2 + \sqrt{3}}{(2 - \sqrt{3})(2 + \sqrt{3})} = \frac{2 + \sqrt{3}}{4 - 3} = 2 + \sqrt{3} \] 7. **Combine the results**: Now we have: \[ \sqrt{a} + \frac{1}{\sqrt{a}} = (2 - \sqrt{3}) + (2 + \sqrt{3}) = 4 \] ### Final Answer: The value of \( a^{\frac{1}{2}} + a^{-\frac{1}{2}} \) is \( 4 \).
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VII|34 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -IV|198 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

If x=7-4sqrt(3), then the value of x+(1)/(x) is:

If x = 7 + 4 sqrt(3) , y = 7 - 4 sqrt(3) , find the value of (1)/(x^(2)) + (1)/(y^(2)) .

If x=7-4sqrt(3) then find the value of x^(2)-(1)/(x^(2))

Prove that if x=(7+4sqrt(3) then value of x^(2)+(1)/(x^(2)) is 194

if a=7-4sqrt(3), find the value of sqrt(a)+(1)/(sqrt(a))

If a=sqrt((7+4sqrt(3))/(7-4sqrt(3))) then the value of [a(a-14)]^(2) is

If a=(3+sqrt(7))/(2), then find the value of a^(2)+(1)/(a^(2))

Find the value of (1)/(7)+(4)/(3)+(1)/(2)+sqrt(5)

If p= 7-4sqrt(3) , then (p^(2)+1)/(7p) =_____.

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -V
  1. If sqrt(3^(n))=2187 then the value of n is

    Text Solution

    |

  2. If 2^(x)=3^(y)=6^(-z), then the value of 1/x+1/y+1/z-

    Text Solution

    |

  3. If a=7-4sqrt(3) , the value of a^((1)/(2))+a^(-(1)/(2)) is

    Text Solution

    |

  4. If (x+(1)/(x))=2, then the value of (x^(99)+(1)/(x^(99))-2) is :

    Text Solution

    |

  5. What is the product of the roots of the equation x^(2)-sqrt(3)=0 ?

    Text Solution

    |

  6. The value of (x^((1)/(3))+x^(-(1)/(3)))(x^((2)/(3))-1+x^(-(2)/(3))) is

    Text Solution

    |

  7. 4^(61)+4^(62)+4^(63)+4^(64) is divisible by

    Text Solution

    |

  8. If 5sqrt(5) xx 5^(3) /5^(-3/2) = 5^(a +2) then the value of a is

    Text Solution

    |

  9. The value of (3+2sqrt(2))^(-3)+(3-2sqrt(2))^(-3) is

    Text Solution

    |

  10. Solve for x : 3^(x)-3^(x-1)=486

    Text Solution

    |

  11. A tap is dripping at a constant rate into a container. The level (Lcm)...

    Text Solution

    |

  12. Arranging the following in ascending order 3^(34), 2^(51), 7^(17) we g...

    Text Solution

    |

  13. If (2^(3))^(2)=4^(x) then 3^(x) is equal to

    Text Solution

    |

  14. The value of [(0.87)^(2)+(0.13)^(2)+(0.87)xx(0.26)]^(2013) is

    Text Solution

    |

  15. The mean of 1^(3), 2^(3), 3^(3), 4^(3), 5^(3), 6^(3), 7^(3) is

    Text Solution

    |

  16. If x=3^((1)/(3))-3^(-(1)/(3)), then (3x^(3)+9x) is equal to

    Text Solution

    |

  17. The exponential form of sqrt(sqrt(2)xxsqrt(3)) is

    Text Solution

    |

  18. The quotient when 10^(100) is divided by 5^(75) is

    Text Solution

    |

  19. If m^(n)=169 what is the value of (m+1)^((n-1)) ?

    Text Solution

    |

  20. If a=b^(p), b=c^(q), c=c^(r ) then pqr is

    Text Solution

    |