Home
Class 14
MATHS
If a=(sqrt(3))/(2) , then the value of s...

If `a=(sqrt(3))/(2)` , then the value of `sqrt(1+a)+sqrt(1-a)` is

A

`sqrt(3)`

B

`(sqrt(3))/(2)`

C

`2+sqrt(3)`

D

`2-sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sqrt{1+a} + \sqrt{1-a} \) given that \( a = \frac{\sqrt{3}}{2} \). ### Step-by-Step Solution: **Step 1: Substitute the value of \( a \)** We start by substituting \( a \) into the expression: \[ \sqrt{1 + a} + \sqrt{1 - a} = \sqrt{1 + \frac{\sqrt{3}}{2}} + \sqrt{1 - \frac{\sqrt{3}}{2}} \] **Step 2: Simplify \( 1 + a \) and \( 1 - a \)** Calculate \( 1 + \frac{\sqrt{3}}{2} \) and \( 1 - \frac{\sqrt{3}}{2} \): \[ 1 + \frac{\sqrt{3}}{2} = \frac{2}{2} + \frac{\sqrt{3}}{2} = \frac{2 + \sqrt{3}}{2} \] \[ 1 - \frac{\sqrt{3}}{2} = \frac{2}{2} - \frac{\sqrt{3}}{2} = \frac{2 - \sqrt{3}}{2} \] **Step 3: Rewrite the expression** Now we can rewrite the expression: \[ \sqrt{1 + a} + \sqrt{1 - a} = \sqrt{\frac{2 + \sqrt{3}}{2}} + \sqrt{\frac{2 - \sqrt{3}}{2}} \] **Step 4: Factor out \( \sqrt{2} \)** Factor out \( \sqrt{2} \) from both terms: \[ = \sqrt{2} \left( \sqrt{\frac{2 + \sqrt{3}}{4}} + \sqrt{\frac{2 - \sqrt{3}}{4}} \right) \] \[ = \sqrt{2} \left( \frac{\sqrt{2 + \sqrt{3}}}{2} + \frac{\sqrt{2 - \sqrt{3}}}{2} \right) \] **Step 5: Combine the terms** Combine the terms inside the parentheses: \[ = \frac{\sqrt{2}}{2} \left( \sqrt{2 + \sqrt{3}} + \sqrt{2 - \sqrt{3}} \right) \] **Step 6: Simplify further** Now we need to simplify \( \sqrt{2 + \sqrt{3}} + \sqrt{2 - \sqrt{3}} \). We can use the identity: \[ \sqrt{a} + \sqrt{b} = \sqrt{(a+b) + 2\sqrt{ab}} \] Let \( a = 2 + \sqrt{3} \) and \( b = 2 - \sqrt{3} \): \[ a + b = (2 + \sqrt{3}) + (2 - \sqrt{3}) = 4 \] \[ ab = (2 + \sqrt{3})(2 - \sqrt{3}) = 4 - 3 = 1 \] Thus, \[ \sqrt{2 + \sqrt{3}} + \sqrt{2 - \sqrt{3}} = \sqrt{4 + 2\sqrt{1}} = \sqrt{4 + 2} = \sqrt{6} \] **Step 7: Final expression** Substituting back, we have: \[ \sqrt{1 + a} + \sqrt{1 - a} = \frac{\sqrt{2}}{2} \cdot \sqrt{6} = \sqrt{3} \] ### Final Answer: The value of \( \sqrt{1+a} + \sqrt{1-a} \) is \( \sqrt{3} \).
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Test Yourself|25 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

If x= sqrt3/2 , then the value of sqrt(1+x)+sqrt(1-x) is

If x= sqrt3/2 , then the value of (sqrt(1+x)+ sqrt(1-x))/(sqrt(1+x)- sqrt(1-x)) is equal to: यदि x= sqrt3/2 , (sqrt(1+x)+ sqrt(1-x))/(sqrt(1+x)- sqrt(1-x)) का मान ज्ञात करें :

If x=2+sqrt(3), then the value of sqrt(x)+(1)/(sqrt(x)) is:

If x=sqrt(1+sqrt(3)/(2))-sqrt(1-sqrt(3)/(2)) , then the value of (sqrt(2)-x)/(sqrt(2)+x) will be closet to :

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -VII
  1. Which of the following is closest to sqrt(3) ?

    Text Solution

    |

  2. If a=(sqrt(3))/(2) , then the value of sqrt(1+a)+sqrt(1-a) is

    Text Solution

    |

  3. If a=(sqrt(5)+1)/(sqrt(5)-1) and b=(sqrt(5)-1)/(sqrt(5)+1) , the value...

    Text Solution

    |

  4. If x=1+sqrt(2)+sqrt(3), then the value of (x+(1)/(x-1)) is

    Text Solution

    |

  5. If x+(1)/(x)=-2 then the value of x^(2n+1)+(1)/(x^(2n+1)) where n is a...

    Text Solution

    |

  6. If m and n (n gt 1) are whole numbers such that m^(n)=121, the value o...

    Text Solution

    |

  7. The number which when multiplied with (sqrt(3)+sqrt(2)) gives (sqrt(12...

    Text Solution

    |

  8. If the product of first fifty positive consecutive integers be divisib...

    Text Solution

    |

  9. If 9sqrt(x)=sqrt(12)+sqrt(147) , then x =?

    Text Solution

    |

  10. A man is born in the year 1896 A.D. If in the year x^(2) A.D. his age ...

    Text Solution

    |

  11. Choose the incorrect relation(s) from the following : (I ) s...

    Text Solution

    |

  12. If x=(1)/(sqrt(2)+1) then (x+1) equal to

    Text Solution

    |

  13. If p=5+2sqrt(6) then (sqrt(p)-1)/(sqrt(p)) is

    Text Solution

    |

  14. If sqrt(x)-sqrt(y)=1, sqrt(x)+sqrt(y)=17 then sqrt(xy)=?

    Text Solution

    |

  15. If x=sqrt(3)+(1)/(sqrt(3)), then the value of (x-(sqrt(126))/(sqrt(42)...

    Text Solution

    |

  16. If 4x=sqrt(5)+2, then the value of (x-(1)/(16x)) is

    Text Solution

    |

  17. What is x, if x^(3)=1.5^(3)-0.9^(3)-2.43

    Text Solution

    |

  18. If ((1)/(5))^(3y)=0.008, then the value of (0.25)^(y) is

    Text Solution

    |

  19. If x=1+sqrt(2)+sqrt(3), then find the value of x^(2)-2x+4.

    Text Solution

    |

  20. If x=sqrt(2)+1, then the value of x^(4)-(1)/(x^(4)) is

    Text Solution

    |