Home
Class 14
MATHS
If a=(sqrt(5)+1)/(sqrt(5)-1) and b=(sqrt...

If `a=(sqrt(5)+1)/(sqrt(5)-1)` and `b=(sqrt(5)-1)/(sqrt(5)+1)` , the value of `((a^(2)+ab+b^(2))/(a^(2)-ab+b^(2)))` is

A

`(3)/(4)`

B

`(4)/(3)`

C

`(3)/(5)`

D

`(5)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{a^2 + ab + b^2}{a^2 - ab + b^2}\) given \(a = \frac{\sqrt{5} + 1}{\sqrt{5} - 1}\) and \(b = \frac{\sqrt{5} - 1}{\sqrt{5} + 1}\), we will follow these steps: ### Step 1: Calculate \(a^2\) and \(b^2\) First, we need to find \(a^2\) and \(b^2\): \[ a^2 = \left(\frac{\sqrt{5} + 1}{\sqrt{5} - 1}\right)^2 = \frac{(\sqrt{5} + 1)^2}{(\sqrt{5} - 1)^2} = \frac{5 + 2\sqrt{5} + 1}{5 - 2\sqrt{5} + 1} = \frac{6 + 2\sqrt{5}}{6 - 2\sqrt{5}} \] \[ b^2 = \left(\frac{\sqrt{5} - 1}{\sqrt{5} + 1}\right)^2 = \frac{(\sqrt{5} - 1)^2}{(\sqrt{5} + 1)^2} = \frac{5 - 2\sqrt{5} + 1}{5 + 2\sqrt{5} + 1} = \frac{6 - 2\sqrt{5}}{6 + 2\sqrt{5}} \] ### Step 2: Calculate \(ab\) Next, we calculate \(ab\): \[ ab = \left(\frac{\sqrt{5} + 1}{\sqrt{5} - 1}\right) \left(\frac{\sqrt{5} - 1}{\sqrt{5} + 1}\right) = \frac{(\sqrt{5} + 1)(\sqrt{5} - 1)}{(\sqrt{5} - 1)(\sqrt{5} + 1)} = \frac{5 - 1}{5 - 1} = 1 \] ### Step 3: Substitute into the expression Now we substitute \(a^2\), \(b^2\), and \(ab\) into the expression \(\frac{a^2 + ab + b^2}{a^2 - ab + b^2}\): \[ a^2 + b^2 = \frac{6 + 2\sqrt{5}}{6 - 2\sqrt{5}} + \frac{6 - 2\sqrt{5}}{6 + 2\sqrt{5}} \] To combine these fractions, we need a common denominator: \[ = \frac{(6 + 2\sqrt{5})^2 + (6 - 2\sqrt{5})^2}{(6 - 2\sqrt{5})(6 + 2\sqrt{5})} \] Calculating the numerator: \[ (6 + 2\sqrt{5})^2 = 36 + 24\sqrt{5} + 20 = 56 + 24\sqrt{5} \] \[ (6 - 2\sqrt{5})^2 = 36 - 24\sqrt{5} + 20 = 56 - 24\sqrt{5} \] Adding these gives: \[ (56 + 24\sqrt{5}) + (56 - 24\sqrt{5}) = 112 \] The denominator simplifies to: \[ (6 - 2\sqrt{5})(6 + 2\sqrt{5}) = 36 - 20 = 16 \] Thus: \[ a^2 + b^2 = \frac{112}{16} = 7 \] Now substituting back into the expression: \[ \frac{a^2 + ab + b^2}{a^2 - ab + b^2} = \frac{7 + 1}{7 - 1} = \frac{8}{6} = \frac{4}{3} \] ### Final Answer The value of \(\frac{a^2 + ab + b^2}{a^2 - ab + b^2}\) is \(\frac{4}{3}\).
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Test Yourself|25 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

If a=(sqrt(3)+1)/(sqrt(3)-1) and b=(sqrt(3)-1)/(sqrt(3)+1) ,find the value of a^(2)+ab-b^(2)

If x=(sqrt(5)+1)/(sqrt(5)-1) and y=(sqrt(5)-1)/(sqrt(5)+1) find the value of x^(2)+y^(2)

If a=(3-sqrt(5))/(3+sqrt(5)) and b=(3+sqrt(5))/(3-sqrt(5)) ,find the value of a^(2)+b^(2)

If a=(sqrt(2)+1)/(sqrt(2)-1) and b=(sqrt(2)-1)/(sqrt(2)+1) ,then find the value of a^(2)+b^(2)-4ab

If a=(sqrt(2)+1)/(sqrt(2)-1)"and"b=(sqrt(2)-1)/(sqrt(2)+1) then value of a^(2)+ab+b^(2) is

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -VII
  1. Which of the following is closest to sqrt(3) ?

    Text Solution

    |

  2. If a=(sqrt(3))/(2) , then the value of sqrt(1+a)+sqrt(1-a) is

    Text Solution

    |

  3. If a=(sqrt(5)+1)/(sqrt(5)-1) and b=(sqrt(5)-1)/(sqrt(5)+1) , the value...

    Text Solution

    |

  4. If x=1+sqrt(2)+sqrt(3), then the value of (x+(1)/(x-1)) is

    Text Solution

    |

  5. If x+(1)/(x)=-2 then the value of x^(2n+1)+(1)/(x^(2n+1)) where n is a...

    Text Solution

    |

  6. If m and n (n gt 1) are whole numbers such that m^(n)=121, the value o...

    Text Solution

    |

  7. The number which when multiplied with (sqrt(3)+sqrt(2)) gives (sqrt(12...

    Text Solution

    |

  8. If the product of first fifty positive consecutive integers be divisib...

    Text Solution

    |

  9. If 9sqrt(x)=sqrt(12)+sqrt(147) , then x =?

    Text Solution

    |

  10. A man is born in the year 1896 A.D. If in the year x^(2) A.D. his age ...

    Text Solution

    |

  11. Choose the incorrect relation(s) from the following : (I ) s...

    Text Solution

    |

  12. If x=(1)/(sqrt(2)+1) then (x+1) equal to

    Text Solution

    |

  13. If p=5+2sqrt(6) then (sqrt(p)-1)/(sqrt(p)) is

    Text Solution

    |

  14. If sqrt(x)-sqrt(y)=1, sqrt(x)+sqrt(y)=17 then sqrt(xy)=?

    Text Solution

    |

  15. If x=sqrt(3)+(1)/(sqrt(3)), then the value of (x-(sqrt(126))/(sqrt(42)...

    Text Solution

    |

  16. If 4x=sqrt(5)+2, then the value of (x-(1)/(16x)) is

    Text Solution

    |

  17. What is x, if x^(3)=1.5^(3)-0.9^(3)-2.43

    Text Solution

    |

  18. If ((1)/(5))^(3y)=0.008, then the value of (0.25)^(y) is

    Text Solution

    |

  19. If x=1+sqrt(2)+sqrt(3), then find the value of x^(2)-2x+4.

    Text Solution

    |

  20. If x=sqrt(2)+1, then the value of x^(4)-(1)/(x^(4)) is

    Text Solution

    |