Home
Class 14
MATHS
If x=(1)/(sqrt(2)+1) then (x+1) equal to...

If `x=(1)/(sqrt(2)+1)` then `(x+1)` equal to

A

`2`

B

`sqrt(2)`

C

`sqrt(2)+1`

D

`sqrt(2)-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( x = \frac{1}{\sqrt{2} + 1} \) and we need to find \( x + 1 \), we can follow these steps: ### Step 1: Rationalize the denominator We start with the expression for \( x \): \[ x = \frac{1}{\sqrt{2} + 1} \] To simplify this, we can multiply the numerator and the denominator by the conjugate of the denominator, which is \( \sqrt{2} - 1 \): \[ x = \frac{1 \cdot (\sqrt{2} - 1)}{(\sqrt{2} + 1)(\sqrt{2} - 1)} \] ### Step 2: Apply the difference of squares Now, we simplify the denominator using the difference of squares formula \( (a + b)(a - b) = a^2 - b^2 \): \[ (\sqrt{2} + 1)(\sqrt{2} - 1) = (\sqrt{2})^2 - (1)^2 = 2 - 1 = 1 \] Thus, we have: \[ x = \sqrt{2} - 1 \] ### Step 3: Calculate \( x + 1 \) Now we need to find \( x + 1 \): \[ x + 1 = (\sqrt{2} - 1) + 1 \] This simplifies to: \[ x + 1 = \sqrt{2} \] ### Conclusion Therefore, the value of \( x + 1 \) is: \[ \sqrt{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Test Yourself|25 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

If x = 1/(sqrt(2) + 1) then (x + 1) equals to

If y=sec^(-1)((sqrt(x)+1)/(sqrt(x)-1))+sin^(-1)((sqrt(x)-1)/(sqrt(x)+1)) then (dy)/(dx) is equal to?

If f'(x)=(1)/(-x+sqrt(x^(2)+1)) and f(0)=(1+sqrt(2))/(2) then f(1) is equal to -log(sqrt(2)+1)( b )11+sqrt(2)(d) none of these

If sin^(-1)x+sin^(-1)(1-x)=sin^(-1)sqrt(1-x^(2)), then x is equal to

If int(2x-sqrt(sin^(-1)x))/(sqrt(1-x^(2)))dx=C-2sqrt(1-x^(2))-(2)/(3)sqrt(f(x)) then f(x) is equal to

" If "int(1)/(x^(4)+1)dx=(1)/(2sqrt(2))tan^(-1)((x^(2)-1)/(sqrt(2)x))+A+c" .Then "A" is equal to "

" If "int(1)/(x^(4)+1)dx=(1)/(2sqrt(2))tan^(-1)((x^(2)-1)/(sqrt(2)x))+A+c" .Then "A" is equal to "

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -VII
  1. A man is born in the year 1896 A.D. If in the year x^(2) A.D. his age ...

    Text Solution

    |

  2. Choose the incorrect relation(s) from the following : (I ) s...

    Text Solution

    |

  3. If x=(1)/(sqrt(2)+1) then (x+1) equal to

    Text Solution

    |

  4. If p=5+2sqrt(6) then (sqrt(p)-1)/(sqrt(p)) is

    Text Solution

    |

  5. If sqrt(x)-sqrt(y)=1, sqrt(x)+sqrt(y)=17 then sqrt(xy)=?

    Text Solution

    |

  6. If x=sqrt(3)+(1)/(sqrt(3)), then the value of (x-(sqrt(126))/(sqrt(42)...

    Text Solution

    |

  7. If 4x=sqrt(5)+2, then the value of (x-(1)/(16x)) is

    Text Solution

    |

  8. What is x, if x^(3)=1.5^(3)-0.9^(3)-2.43

    Text Solution

    |

  9. If ((1)/(5))^(3y)=0.008, then the value of (0.25)^(y) is

    Text Solution

    |

  10. If x=1+sqrt(2)+sqrt(3), then find the value of x^(2)-2x+4.

    Text Solution

    |

  11. If x=sqrt(2)+1, then the value of x^(4)-(1)/(x^(4)) is

    Text Solution

    |

  12. (1)/(sqrt(a))-(1)/(sqrt(b))=0, then the value of (1)/(a)+(1)/(b) is

    Text Solution

    |

  13. If x=(0.25)^((1)/(2)), y=(0.4)^(2), z=(0.216)^((1)/(3)), then

    Text Solution

    |

  14. If a+(1)/(a)=2, then the value of (a^(5)+(1)/(a^(5))) will be

    Text Solution

    |

  15. If x=2+sqrt(3), then the value of (x^(2)-x+1)/(x^(2)+x+1) is :

    Text Solution

    |

  16. If 3a=4b=6c and a+b+c=27sqrt(29) then sqrt(a^(2)+b^(2)+c^(2)) is equal...

    Text Solution

    |

  17. If (sqrt(3)+1)^(2)=x+sqrt(3)y, then the value of (x+y) is

    Text Solution

    |

  18. If p=9, q=sqrt(17) then the value of (p^(2)-q^(2))^((-1)/(3)) is equal...

    Text Solution

    |

  19. If sqrt(1+(x)/(144))=(13)/(12), then x equals to

    Text Solution

    |

  20. If a=sqrt(2)+1 and b=sqrt(2)-1, then the value of (1)/(a+1)+(1)/(b+1) ...

    Text Solution

    |