Home
Class 14
MATHS
If p=5+2sqrt(6) then (sqrt(p)-1)/(sqrt(p...

If `p=5+2sqrt(6)` then `(sqrt(p)-1)/(sqrt(p))` is

A

`1+sqrt(2)-sqrt(3)`

B

`1-sqrt(2)+sqrt(3)`

C

`-1+sqrt(2)-sqrt(3)`

D

`1-sqrt(2)-sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{\sqrt{p} - 1}{\sqrt{p}}\) given that \(p = 5 + 2\sqrt{6}\). ### Step-by-Step Solution: 1. **Identify \(p\)**: \[ p = 5 + 2\sqrt{6} \] 2. **Calculate \(\sqrt{p}\)**: We can express \(p\) in a different form. Notice that: \[ p = (\sqrt{3} + \sqrt{2})^2 \] This is because: \[ (\sqrt{3} + \sqrt{2})^2 = 3 + 2 + 2\sqrt{3}\sqrt{2} = 5 + 2\sqrt{6} \] Thus, \[ \sqrt{p} = \sqrt{3} + \sqrt{2} \] 3. **Substitute \(\sqrt{p}\) into the expression**: We need to evaluate: \[ \frac{\sqrt{p} - 1}{\sqrt{p}} = \frac{(\sqrt{3} + \sqrt{2}) - 1}{\sqrt{3} + \sqrt{2}} \] 4. **Simplify the expression**: This can be simplified to: \[ \frac{\sqrt{3} + \sqrt{2} - 1}{\sqrt{3} + \sqrt{2}} = 1 - \frac{1}{\sqrt{3} + \sqrt{2}} \] 5. **Rationalize \(\frac{1}{\sqrt{3} + \sqrt{2}}\)**: To rationalize the denominator, multiply the numerator and denominator by \(\sqrt{3} - \sqrt{2}\): \[ \frac{1}{\sqrt{3} + \sqrt{2}} \cdot \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}} = \frac{\sqrt{3} - \sqrt{2}}{3 - 2} = \sqrt{3} - \sqrt{2} \] 6. **Substitute back into the expression**: Now substitute back: \[ 1 - \left(\sqrt{3} - \sqrt{2}\right) = 1 - \sqrt{3} + \sqrt{2} \] 7. **Final Result**: Therefore, the final value of \(\frac{\sqrt{p} - 1}{\sqrt{p}}\) is: \[ \sqrt{2} - \sqrt{3} + 1 \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Test Yourself|25 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

P=(124-32sqrt(15))^((1)/(4)),q=(x^(4)+(1)/(x^(4))) where x=sqrt(3+2sqrt(2)), then ((q-p^(2))/(sqrt(15))) is

If p=5-2sqrt(6) Find p^(2)+(1)/(p^(2))

If p(x)=x^2-5sqrt5x+1 then p(sqrt5)=

If p(x)=x^(2)-2sqrt(2)x+1 , then p (2sqrt(2)) is equal to

If x=(sqrt(p+q)+sqrt(p-q))/(sqrt(p+q)-sqrt(p-q)) find the value of qx^(2)-2px+q

If x=(sqrt(p+q)+sqrt(p-q))/(sqrt(p+q)-sqrt(p-q)) then find the value of qx^(2)-2px+q

If P(x)=x^(2)-2sqrt(2)x+1 then p(2sqrt(2)) is equal to?

If p(x)=x^(2)-2sqrt(2)x+1 , then p(2sqrt(2)) =

If p= 7-4sqrt(3) , then (p^(2)+1)/(7p) =_____.

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -VII
  1. Choose the incorrect relation(s) from the following : (I ) s...

    Text Solution

    |

  2. If x=(1)/(sqrt(2)+1) then (x+1) equal to

    Text Solution

    |

  3. If p=5+2sqrt(6) then (sqrt(p)-1)/(sqrt(p)) is

    Text Solution

    |

  4. If sqrt(x)-sqrt(y)=1, sqrt(x)+sqrt(y)=17 then sqrt(xy)=?

    Text Solution

    |

  5. If x=sqrt(3)+(1)/(sqrt(3)), then the value of (x-(sqrt(126))/(sqrt(42)...

    Text Solution

    |

  6. If 4x=sqrt(5)+2, then the value of (x-(1)/(16x)) is

    Text Solution

    |

  7. What is x, if x^(3)=1.5^(3)-0.9^(3)-2.43

    Text Solution

    |

  8. If ((1)/(5))^(3y)=0.008, then the value of (0.25)^(y) is

    Text Solution

    |

  9. If x=1+sqrt(2)+sqrt(3), then find the value of x^(2)-2x+4.

    Text Solution

    |

  10. If x=sqrt(2)+1, then the value of x^(4)-(1)/(x^(4)) is

    Text Solution

    |

  11. (1)/(sqrt(a))-(1)/(sqrt(b))=0, then the value of (1)/(a)+(1)/(b) is

    Text Solution

    |

  12. If x=(0.25)^((1)/(2)), y=(0.4)^(2), z=(0.216)^((1)/(3)), then

    Text Solution

    |

  13. If a+(1)/(a)=2, then the value of (a^(5)+(1)/(a^(5))) will be

    Text Solution

    |

  14. If x=2+sqrt(3), then the value of (x^(2)-x+1)/(x^(2)+x+1) is :

    Text Solution

    |

  15. If 3a=4b=6c and a+b+c=27sqrt(29) then sqrt(a^(2)+b^(2)+c^(2)) is equal...

    Text Solution

    |

  16. If (sqrt(3)+1)^(2)=x+sqrt(3)y, then the value of (x+y) is

    Text Solution

    |

  17. If p=9, q=sqrt(17) then the value of (p^(2)-q^(2))^((-1)/(3)) is equal...

    Text Solution

    |

  18. If sqrt(1+(x)/(144))=(13)/(12), then x equals to

    Text Solution

    |

  19. If a=sqrt(2)+1 and b=sqrt(2)-1, then the value of (1)/(a+1)+(1)/(b+1) ...

    Text Solution

    |

  20. If x=(1)/((sqrt(2)+1)) then the value of (x^(2)+2x-1) is

    Text Solution

    |