Home
Class 14
MATHS
What is x, if x^(3)=1.5^(3)-0.9^(3)-2.43...

What is x, if `x^(3)=1.5^(3)-0.9^(3)-2.43`

A

`-0.5`

B

`0.6`

C

`-0.7`

D

`-1.6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^3 = 1.5^3 - 0.9^3 - 2.43 \), we will follow these steps: ### Step 1: Calculate \( 1.5^3 \) First, we need to find the value of \( 1.5^3 \). \[ 1.5^3 = 1.5 \times 1.5 \times 1.5 = 3.375 \] ### Step 2: Calculate \( 0.9^3 \) Next, we find the value of \( 0.9^3 \). \[ 0.9^3 = 0.9 \times 0.9 \times 0.9 = 0.729 \] ### Step 3: Substitute the values into the equation Now we substitute the calculated values back into the equation: \[ x^3 = 3.375 - 0.729 - 2.43 \] ### Step 4: Perform the subtraction Now we perform the subtraction step by step: 1. First, calculate \( 3.375 - 0.729 \): \[ 3.375 - 0.729 = 2.646 \] 2. Then, subtract \( 2.43 \) from \( 2.646 \): \[ 2.646 - 2.43 = 0.216 \] ### Step 5: Set up the final equation Now we have: \[ x^3 = 0.216 \] ### Step 6: Solve for \( x \) To find \( x \), we take the cube root of both sides: \[ x = \sqrt[3]{0.216} \] ### Step 7: Calculate the cube root Now we calculate the cube root: \[ x = 0.6 \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{0.6} \] ---
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Test Yourself|25 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

Roots of equation x^(5)-5x^(4)+9x^(3)-9x^(2)+5x-1=0 are

If x^(2)-4x+1=0 , then what is the value of x^(9) + x^(7) -194x^(5)-194x^(3) ?

substituting x=-3 in x^(2)+5x gives (-3)^(2)+5(-3)=-9-15=24

The sum of the real roots of the equation x^(5)-5x^(4)+9x^(3)-9x^(2)+5x-1=0 is

Solve x(2^(x)-1)(3^(x)-9)^(5)(x-3)<0

15^(x)-25.3^(x)-9.5^(x)+225>=0

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -VII
  1. If x=sqrt(3)+(1)/(sqrt(3)), then the value of (x-(sqrt(126))/(sqrt(42)...

    Text Solution

    |

  2. If 4x=sqrt(5)+2, then the value of (x-(1)/(16x)) is

    Text Solution

    |

  3. What is x, if x^(3)=1.5^(3)-0.9^(3)-2.43

    Text Solution

    |

  4. If ((1)/(5))^(3y)=0.008, then the value of (0.25)^(y) is

    Text Solution

    |

  5. If x=1+sqrt(2)+sqrt(3), then find the value of x^(2)-2x+4.

    Text Solution

    |

  6. If x=sqrt(2)+1, then the value of x^(4)-(1)/(x^(4)) is

    Text Solution

    |

  7. (1)/(sqrt(a))-(1)/(sqrt(b))=0, then the value of (1)/(a)+(1)/(b) is

    Text Solution

    |

  8. If x=(0.25)^((1)/(2)), y=(0.4)^(2), z=(0.216)^((1)/(3)), then

    Text Solution

    |

  9. If a+(1)/(a)=2, then the value of (a^(5)+(1)/(a^(5))) will be

    Text Solution

    |

  10. If x=2+sqrt(3), then the value of (x^(2)-x+1)/(x^(2)+x+1) is :

    Text Solution

    |

  11. If 3a=4b=6c and a+b+c=27sqrt(29) then sqrt(a^(2)+b^(2)+c^(2)) is equal...

    Text Solution

    |

  12. If (sqrt(3)+1)^(2)=x+sqrt(3)y, then the value of (x+y) is

    Text Solution

    |

  13. If p=9, q=sqrt(17) then the value of (p^(2)-q^(2))^((-1)/(3)) is equal...

    Text Solution

    |

  14. If sqrt(1+(x)/(144))=(13)/(12), then x equals to

    Text Solution

    |

  15. If a=sqrt(2)+1 and b=sqrt(2)-1, then the value of (1)/(a+1)+(1)/(b+1) ...

    Text Solution

    |

  16. If x=(1)/((sqrt(2)+1)) then the value of (x^(2)+2x-1) is

    Text Solution

    |

  17. If x+(1)/(x)=sqrt(13), then (3x)/((x^(2)-1)) equals to

    Text Solution

    |

  18. If x+sqrt(5)=5+sqrt(y) and x,y are positive integers , then the value ...

    Text Solution

    |

  19. If c+(1)/(c )=sqrt(3), then the value of c^(3)+(1)/(c^(3)) is equal to

    Text Solution

    |

  20. What would be the remainder when 10^(6)-12 is divided by 9 ?

    Text Solution

    |