Home
Class 14
MATHS
If x=sqrt(2)+1, then the value of x^(4)-...

If `x=sqrt(2)+1`, then the value of `x^(4)-(1)/(x^(4))` is

A

`8sqrt(2)`

B

`18sqrt(2)`

C

`6sqrt(2)`

D

`24sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^4 - \frac{1}{x^4} \) given that \( x = \sqrt{2} + 1 \). ### Step-by-Step Solution: 1. **Find \( \frac{1}{x} \)**: \[ x = \sqrt{2} + 1 \implies \frac{1}{x} = \frac{1}{\sqrt{2} + 1} \] To rationalize the denominator, multiply the numerator and denominator by \( \sqrt{2} - 1 \): \[ \frac{1}{x} = \frac{\sqrt{2} - 1}{(\sqrt{2} + 1)(\sqrt{2} - 1)} = \frac{\sqrt{2} - 1}{2 - 1} = \sqrt{2} - 1 \] 2. **Calculate \( x + \frac{1}{x} \)**: \[ x + \frac{1}{x} = (\sqrt{2} + 1) + (\sqrt{2} - 1) = 2\sqrt{2} \] 3. **Calculate \( x - \frac{1}{x} \)**: \[ x - \frac{1}{x} = (\sqrt{2} + 1) - (\sqrt{2} - 1) = 2 \] 4. **Find \( x^2 + \frac{1}{x^2} \)** using the identity \( (a + b)^2 = a^2 + b^2 + 2ab \): \[ x^2 + \frac{1}{x^2} = \left( x + \frac{1}{x} \right)^2 - 2 = (2\sqrt{2})^2 - 2 = 8 - 2 = 6 \] 5. **Find \( x^2 - \frac{1}{x^2} \)** using the identity \( (a - b)^2 = a^2 + b^2 - 2ab \): \[ x^2 - \frac{1}{x^2} = \left( x - \frac{1}{x} \right)^2 = 2^2 = 4 \] 6. **Calculate \( x^4 - \frac{1}{x^4} \)** using the identity \( (a^2 + b^2)^2 = a^4 + b^4 + 2a^2b^2 \): \[ x^4 - \frac{1}{x^4} = \left( x^2 + \frac{1}{x^2} \right)^2 - \left( x^2 - \frac{1}{x^2} \right)^2 \] Substitute the values we found: \[ = 6^2 - 4^2 = 36 - 16 = 20 \] 7. **Final Calculation**: To find \( x^4 - \frac{1}{x^4} \), we can also express it in terms of \( x^2 + \frac{1}{x^2} \) and \( x^2 - \frac{1}{x^2} \): \[ x^4 - \frac{1}{x^4} = (x^2 + \frac{1}{x^2})(x^2 - \frac{1}{x^2}) = 6 \cdot 4 = 24 \] Thus, the final answer is: \[ \boxed{24\sqrt{2}} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Test Yourself|25 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

if x-(1)/(x)=2, then the value of x^(4)+(1)/(x^(4)) is

If 4x=sqrt(5)+2 then the value of 4x-(1)/(16x) is

If x=7-4sqrt(3), then the value of x+(1)/(x) is:

If x=sqrt(2)+1 find the value of x^(4)-4x^(3)+4x^(2)+1

If x=2+sqrt(3) , then find the value of x^(4)-4x^(3)+x^(2)+x+1 .

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -VII
  1. If x=sqrt(3)+(1)/(sqrt(3)), then the value of (x-(sqrt(126))/(sqrt(42)...

    Text Solution

    |

  2. If 4x=sqrt(5)+2, then the value of (x-(1)/(16x)) is

    Text Solution

    |

  3. What is x, if x^(3)=1.5^(3)-0.9^(3)-2.43

    Text Solution

    |

  4. If ((1)/(5))^(3y)=0.008, then the value of (0.25)^(y) is

    Text Solution

    |

  5. If x=1+sqrt(2)+sqrt(3), then find the value of x^(2)-2x+4.

    Text Solution

    |

  6. If x=sqrt(2)+1, then the value of x^(4)-(1)/(x^(4)) is

    Text Solution

    |

  7. (1)/(sqrt(a))-(1)/(sqrt(b))=0, then the value of (1)/(a)+(1)/(b) is

    Text Solution

    |

  8. If x=(0.25)^((1)/(2)), y=(0.4)^(2), z=(0.216)^((1)/(3)), then

    Text Solution

    |

  9. If a+(1)/(a)=2, then the value of (a^(5)+(1)/(a^(5))) will be

    Text Solution

    |

  10. If x=2+sqrt(3), then the value of (x^(2)-x+1)/(x^(2)+x+1) is :

    Text Solution

    |

  11. If 3a=4b=6c and a+b+c=27sqrt(29) then sqrt(a^(2)+b^(2)+c^(2)) is equal...

    Text Solution

    |

  12. If (sqrt(3)+1)^(2)=x+sqrt(3)y, then the value of (x+y) is

    Text Solution

    |

  13. If p=9, q=sqrt(17) then the value of (p^(2)-q^(2))^((-1)/(3)) is equal...

    Text Solution

    |

  14. If sqrt(1+(x)/(144))=(13)/(12), then x equals to

    Text Solution

    |

  15. If a=sqrt(2)+1 and b=sqrt(2)-1, then the value of (1)/(a+1)+(1)/(b+1) ...

    Text Solution

    |

  16. If x=(1)/((sqrt(2)+1)) then the value of (x^(2)+2x-1) is

    Text Solution

    |

  17. If x+(1)/(x)=sqrt(13), then (3x)/((x^(2)-1)) equals to

    Text Solution

    |

  18. If x+sqrt(5)=5+sqrt(y) and x,y are positive integers , then the value ...

    Text Solution

    |

  19. If c+(1)/(c )=sqrt(3), then the value of c^(3)+(1)/(c^(3)) is equal to

    Text Solution

    |

  20. What would be the remainder when 10^(6)-12 is divided by 9 ?

    Text Solution

    |