Home
Class 14
MATHS
(1)/(sqrt(a))-(1)/(sqrt(b))=0, then the ...

`(1)/(sqrt(a))-(1)/(sqrt(b))=0`, then the value of `(1)/(a)+(1)/(b)` is

A

`(1)/(sqrt(ab))`

B

`sqrt(ab)`

C

`(2)/(sqrt(ab))`

D

`(1)/(2sqrt(ab))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{1}{\sqrt{a}} - \frac{1}{\sqrt{b}} = 0\) and find the value of \(\frac{1}{a} + \frac{1}{b}\), we can follow these steps: ### Step 1: Set the equation to zero Starting with the given equation: \[ \frac{1}{\sqrt{a}} - \frac{1}{\sqrt{b}} = 0 \] ### Step 2: Rearrange the equation We can rearrange this equation to isolate one of the fractions: \[ \frac{1}{\sqrt{a}} = \frac{1}{\sqrt{b}} \] ### Step 3: Cross-multiply Cross-multiplying gives us: \[ \sqrt{b} = \sqrt{a} \] ### Step 4: Square both sides Now, squaring both sides to eliminate the square roots: \[ b = a \] ### Step 5: Substitute \(b\) in the expression We need to find \(\frac{1}{a} + \frac{1}{b}\). Since \(b = a\), we can substitute \(b\) with \(a\): \[ \frac{1}{a} + \frac{1}{b} = \frac{1}{a} + \frac{1}{a} \] ### Step 6: Combine the fractions Combining the fractions gives: \[ \frac{1}{a} + \frac{1}{a} = \frac{2}{a} \] ### Conclusion Thus, the value of \(\frac{1}{a} + \frac{1}{b}\) is: \[ \frac{2}{a} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Test Yourself|25 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

If a=(1)/(3-2sqrt(2)),b=(1)/(3+2sqrt(2)) then the value of a^(2)+b^(2) is

a=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)),b=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) then the value of (1)/(a^(2))+(1)/(b^(2))

If a = (sqrt(5) + sqrt(4))^(-3) and b = (sqrt(5) - sqrt(4))^(-3) , then the value of: (a+1)^(-1) + (b+1)^(-1) is:

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -VII
  1. If x=sqrt(3)+(1)/(sqrt(3)), then the value of (x-(sqrt(126))/(sqrt(42)...

    Text Solution

    |

  2. If 4x=sqrt(5)+2, then the value of (x-(1)/(16x)) is

    Text Solution

    |

  3. What is x, if x^(3)=1.5^(3)-0.9^(3)-2.43

    Text Solution

    |

  4. If ((1)/(5))^(3y)=0.008, then the value of (0.25)^(y) is

    Text Solution

    |

  5. If x=1+sqrt(2)+sqrt(3), then find the value of x^(2)-2x+4.

    Text Solution

    |

  6. If x=sqrt(2)+1, then the value of x^(4)-(1)/(x^(4)) is

    Text Solution

    |

  7. (1)/(sqrt(a))-(1)/(sqrt(b))=0, then the value of (1)/(a)+(1)/(b) is

    Text Solution

    |

  8. If x=(0.25)^((1)/(2)), y=(0.4)^(2), z=(0.216)^((1)/(3)), then

    Text Solution

    |

  9. If a+(1)/(a)=2, then the value of (a^(5)+(1)/(a^(5))) will be

    Text Solution

    |

  10. If x=2+sqrt(3), then the value of (x^(2)-x+1)/(x^(2)+x+1) is :

    Text Solution

    |

  11. If 3a=4b=6c and a+b+c=27sqrt(29) then sqrt(a^(2)+b^(2)+c^(2)) is equal...

    Text Solution

    |

  12. If (sqrt(3)+1)^(2)=x+sqrt(3)y, then the value of (x+y) is

    Text Solution

    |

  13. If p=9, q=sqrt(17) then the value of (p^(2)-q^(2))^((-1)/(3)) is equal...

    Text Solution

    |

  14. If sqrt(1+(x)/(144))=(13)/(12), then x equals to

    Text Solution

    |

  15. If a=sqrt(2)+1 and b=sqrt(2)-1, then the value of (1)/(a+1)+(1)/(b+1) ...

    Text Solution

    |

  16. If x=(1)/((sqrt(2)+1)) then the value of (x^(2)+2x-1) is

    Text Solution

    |

  17. If x+(1)/(x)=sqrt(13), then (3x)/((x^(2)-1)) equals to

    Text Solution

    |

  18. If x+sqrt(5)=5+sqrt(y) and x,y are positive integers , then the value ...

    Text Solution

    |

  19. If c+(1)/(c )=sqrt(3), then the value of c^(3)+(1)/(c^(3)) is equal to

    Text Solution

    |

  20. What would be the remainder when 10^(6)-12 is divided by 9 ?

    Text Solution

    |