Home
Class 14
MATHS
If x=2+sqrt(3), then the value of (x^(2)...

If `x=2+sqrt(3)`, then the value of `(x^(2)-x+1)/(x^(2)+x+1)` is :

A

`(2)/(3)`

B

`(3)/(4)`

C

`(4)/(5)`

D

`(3)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \((x^2 - x + 1) / (x^2 + x + 1)\) given that \(x = 2 + \sqrt{3}\). ### Step-by-Step Solution: 1. **Calculate \(x^2\)**: \[ x = 2 + \sqrt{3} \] Squaring \(x\): \[ x^2 = (2 + \sqrt{3})^2 = 2^2 + 2 \cdot 2 \cdot \sqrt{3} + (\sqrt{3})^2 = 4 + 4\sqrt{3} + 3 = 7 + 4\sqrt{3} \] **Hint**: Remember to use the formula \((a + b)^2 = a^2 + 2ab + b^2\). 2. **Calculate \(x^2 - x + 1\)**: \[ x^2 - x + 1 = (7 + 4\sqrt{3}) - (2 + \sqrt{3}) + 1 \] Simplifying this: \[ = 7 + 4\sqrt{3} - 2 - \sqrt{3} + 1 = (7 - 2 + 1) + (4\sqrt{3} - \sqrt{3}) = 6 + 3\sqrt{3} \] **Hint**: Combine like terms carefully. 3. **Calculate \(x^2 + x + 1\)**: \[ x^2 + x + 1 = (7 + 4\sqrt{3}) + (2 + \sqrt{3}) + 1 \] Simplifying this: \[ = 7 + 4\sqrt{3} + 2 + \sqrt{3} + 1 = (7 + 2 + 1) + (4\sqrt{3} + \sqrt{3}) = 10 + 5\sqrt{3} \] **Hint**: Again, combine like terms carefully. 4. **Form the final expression**: Now we substitute back into the original expression: \[ \frac{x^2 - x + 1}{x^2 + x + 1} = \frac{6 + 3\sqrt{3}}{10 + 5\sqrt{3}} \] **Hint**: Ensure you write the fraction correctly. 5. **Simplify the fraction**: To simplify, we can factor out the common terms: \[ = \frac{3(2 + \sqrt{3})}{5(2 + \sqrt{3})} = \frac{3}{5} \] **Hint**: Look for common factors in the numerator and denominator. ### Final Answer: The value of \(\frac{x^2 - x + 1}{x^2 + x + 1}\) is \(\frac{3}{5}\).
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Test Yourself|25 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

If x=1+sqrt(2), then the value of (x-(1)/(x))^(2) is

If x=2-sqrt(3) , then the values of x^(2)+(1)/(x^(2)) and x^(2)-(1)/(x^(2)) respectively are

If x=(1)/(3-2sqrt(2)) ,then the value of ((1)/(x))^(2) is

If x=1-sqrt(2) then find the value of (x-(1)/(x))^(3)

If x=1-sqrt(2) then find the value of (x-(1)/(x))^(3)

If x=2+sqrt(3) , then find the value of x^(4)-4x^(3)+x^(2)+x+1 .

If x=(1)/(2-sqrt(3)) then find the value of x+(1)/(x)

If x - (1)/( x) = sqrt21, then the value of (x ^(2) + (1)/( x ^(2))) (x + (1)/(x)) is

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -VII
  1. If x=sqrt(3)+(1)/(sqrt(3)), then the value of (x-(sqrt(126))/(sqrt(42)...

    Text Solution

    |

  2. If 4x=sqrt(5)+2, then the value of (x-(1)/(16x)) is

    Text Solution

    |

  3. What is x, if x^(3)=1.5^(3)-0.9^(3)-2.43

    Text Solution

    |

  4. If ((1)/(5))^(3y)=0.008, then the value of (0.25)^(y) is

    Text Solution

    |

  5. If x=1+sqrt(2)+sqrt(3), then find the value of x^(2)-2x+4.

    Text Solution

    |

  6. If x=sqrt(2)+1, then the value of x^(4)-(1)/(x^(4)) is

    Text Solution

    |

  7. (1)/(sqrt(a))-(1)/(sqrt(b))=0, then the value of (1)/(a)+(1)/(b) is

    Text Solution

    |

  8. If x=(0.25)^((1)/(2)), y=(0.4)^(2), z=(0.216)^((1)/(3)), then

    Text Solution

    |

  9. If a+(1)/(a)=2, then the value of (a^(5)+(1)/(a^(5))) will be

    Text Solution

    |

  10. If x=2+sqrt(3), then the value of (x^(2)-x+1)/(x^(2)+x+1) is :

    Text Solution

    |

  11. If 3a=4b=6c and a+b+c=27sqrt(29) then sqrt(a^(2)+b^(2)+c^(2)) is equal...

    Text Solution

    |

  12. If (sqrt(3)+1)^(2)=x+sqrt(3)y, then the value of (x+y) is

    Text Solution

    |

  13. If p=9, q=sqrt(17) then the value of (p^(2)-q^(2))^((-1)/(3)) is equal...

    Text Solution

    |

  14. If sqrt(1+(x)/(144))=(13)/(12), then x equals to

    Text Solution

    |

  15. If a=sqrt(2)+1 and b=sqrt(2)-1, then the value of (1)/(a+1)+(1)/(b+1) ...

    Text Solution

    |

  16. If x=(1)/((sqrt(2)+1)) then the value of (x^(2)+2x-1) is

    Text Solution

    |

  17. If x+(1)/(x)=sqrt(13), then (3x)/((x^(2)-1)) equals to

    Text Solution

    |

  18. If x+sqrt(5)=5+sqrt(y) and x,y are positive integers , then the value ...

    Text Solution

    |

  19. If c+(1)/(c )=sqrt(3), then the value of c^(3)+(1)/(c^(3)) is equal to

    Text Solution

    |

  20. What would be the remainder when 10^(6)-12 is divided by 9 ?

    Text Solution

    |