Home
Class 14
MATHS
If (sqrt(3)+1)^(2)=x+sqrt(3)y, then the ...

If `(sqrt(3)+1)^(2)=x+sqrt(3)y`, then the value of `(x+y)` is

A

2

B

4

C

6

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((\sqrt{3}+1)^{2}=x+\sqrt{3}y\), we will follow these steps: ### Step 1: Expand \((\sqrt{3}+1)^{2}\) Using the formula for the square of a binomial, \((a+b)^{2} = a^{2} + 2ab + b^{2}\), we can expand \((\sqrt{3}+1)^{2}\). \[ (\sqrt{3}+1)^{2} = (\sqrt{3})^{2} + 2(\sqrt{3})(1) + (1)^{2} \] ### Step 2: Calculate each term Now, we calculate each term in the expansion: 1. \((\sqrt{3})^{2} = 3\) 2. \(2(\sqrt{3})(1) = 2\sqrt{3}\) 3. \((1)^{2} = 1\) Putting these together, we have: \[ (\sqrt{3}+1)^{2} = 3 + 2\sqrt{3} + 1 \] ### Step 3: Combine like terms Now, we combine the constant terms: \[ 3 + 1 = 4 \] Thus, we have: \[ (\sqrt{3}+1)^{2} = 4 + 2\sqrt{3} \] ### Step 4: Set the equation equal to \(x + \sqrt{3}y\) Now, we can set this equal to \(x + \sqrt{3}y\): \[ 4 + 2\sqrt{3} = x + \sqrt{3}y \] ### Step 5: Compare coefficients From the equation \(4 + 2\sqrt{3} = x + \sqrt{3}y\), we can compare the coefficients of the constant terms and the coefficients of \(\sqrt{3}\): 1. The constant term gives us: \[ x = 4 \] 2. The coefficient of \(\sqrt{3}\) gives us: \[ y = 2 \] ### Step 6: Calculate \(x + y\) Now, we can find \(x + y\): \[ x + y = 4 + 2 = 6 \] Thus, the final answer is: \[ \boxed{6} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Test Yourself|25 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

If (sqrt(3)-1)/(sqrt(3)+1)=x+y sqrt(3), find the value of x and y

If x = (1)/(2 + sqrt3) , y = (1)/(2 - sqrt3) then the value of (1)/(x + 1) + (1)/(y +1) is :

If x = 1/(2+sqrt3) , y =1/(2-sqrt3) , then the value of 1/(x+1) +1/(y+1) is

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -VII
  1. If x=sqrt(3)+(1)/(sqrt(3)), then the value of (x-(sqrt(126))/(sqrt(42)...

    Text Solution

    |

  2. If 4x=sqrt(5)+2, then the value of (x-(1)/(16x)) is

    Text Solution

    |

  3. What is x, if x^(3)=1.5^(3)-0.9^(3)-2.43

    Text Solution

    |

  4. If ((1)/(5))^(3y)=0.008, then the value of (0.25)^(y) is

    Text Solution

    |

  5. If x=1+sqrt(2)+sqrt(3), then find the value of x^(2)-2x+4.

    Text Solution

    |

  6. If x=sqrt(2)+1, then the value of x^(4)-(1)/(x^(4)) is

    Text Solution

    |

  7. (1)/(sqrt(a))-(1)/(sqrt(b))=0, then the value of (1)/(a)+(1)/(b) is

    Text Solution

    |

  8. If x=(0.25)^((1)/(2)), y=(0.4)^(2), z=(0.216)^((1)/(3)), then

    Text Solution

    |

  9. If a+(1)/(a)=2, then the value of (a^(5)+(1)/(a^(5))) will be

    Text Solution

    |

  10. If x=2+sqrt(3), then the value of (x^(2)-x+1)/(x^(2)+x+1) is :

    Text Solution

    |

  11. If 3a=4b=6c and a+b+c=27sqrt(29) then sqrt(a^(2)+b^(2)+c^(2)) is equal...

    Text Solution

    |

  12. If (sqrt(3)+1)^(2)=x+sqrt(3)y, then the value of (x+y) is

    Text Solution

    |

  13. If p=9, q=sqrt(17) then the value of (p^(2)-q^(2))^((-1)/(3)) is equal...

    Text Solution

    |

  14. If sqrt(1+(x)/(144))=(13)/(12), then x equals to

    Text Solution

    |

  15. If a=sqrt(2)+1 and b=sqrt(2)-1, then the value of (1)/(a+1)+(1)/(b+1) ...

    Text Solution

    |

  16. If x=(1)/((sqrt(2)+1)) then the value of (x^(2)+2x-1) is

    Text Solution

    |

  17. If x+(1)/(x)=sqrt(13), then (3x)/((x^(2)-1)) equals to

    Text Solution

    |

  18. If x+sqrt(5)=5+sqrt(y) and x,y are positive integers , then the value ...

    Text Solution

    |

  19. If c+(1)/(c )=sqrt(3), then the value of c^(3)+(1)/(c^(3)) is equal to

    Text Solution

    |

  20. What would be the remainder when 10^(6)-12 is divided by 9 ?

    Text Solution

    |