Home
Class 14
MATHS
If sqrt(1+(x)/(144))=(13)/(12), then x e...

If `sqrt(1+(x)/(144))=(13)/(12)`, then x equals to

A

1

B

13

C

27

D

25

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{1 + \frac{x}{144}} = \frac{13}{12} \), we will follow these steps: ### Step 1: Square both sides To eliminate the square root, we square both sides of the equation. \[ \left(\sqrt{1 + \frac{x}{144}}\right)^2 = \left(\frac{13}{12}\right)^2 \] This simplifies to: \[ 1 + \frac{x}{144} = \frac{169}{144} \] ### Step 2: Isolate the term with x Next, we want to isolate the term containing \( x \). We do this by subtracting 1 from both sides. \[ \frac{x}{144} = \frac{169}{144} - 1 \] To subtract 1, we can express 1 as \( \frac{144}{144} \): \[ \frac{x}{144} = \frac{169}{144} - \frac{144}{144} \] This simplifies to: \[ \frac{x}{144} = \frac{169 - 144}{144} = \frac{25}{144} \] ### Step 3: Solve for x Now, we multiply both sides by 144 to solve for \( x \): \[ x = 144 \cdot \frac{25}{144} \] This simplifies to: \[ x = 25 \] ### Final Answer Thus, the value of \( x \) is \( 25 \). ---
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Test Yourself|25 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

If sqrt(1+(x)/(144))=(13)/(12), then x is equal to

If sqrt(1+(x)/(169))=(14)/(13), then x is equal to (a) 1 (b) 13(c)27 (d) None of these

If sqrt(1+(x)/(144))=(13)/(12), then find the value of x

If sqrt(1+(27)/(169))=1+(x)/(13); then x=

If sin^(-1)((5)/(x))+sin^(-1)((12)/(x))=(pi)/(2), then x is equal to (7)/(13) (b) (4)/(3)(c)13 (d) (13)/(7)

If the fourth term in the expansion of {sqrt((1)/(sin x+1))+(1)/(x^(12))} is equal to 200 and x>1, then find x.

sqrt (1+ (25) / (144)) = 1+ (x) / (12) ten =?

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -VII
  1. If x=sqrt(3)+(1)/(sqrt(3)), then the value of (x-(sqrt(126))/(sqrt(42)...

    Text Solution

    |

  2. If 4x=sqrt(5)+2, then the value of (x-(1)/(16x)) is

    Text Solution

    |

  3. What is x, if x^(3)=1.5^(3)-0.9^(3)-2.43

    Text Solution

    |

  4. If ((1)/(5))^(3y)=0.008, then the value of (0.25)^(y) is

    Text Solution

    |

  5. If x=1+sqrt(2)+sqrt(3), then find the value of x^(2)-2x+4.

    Text Solution

    |

  6. If x=sqrt(2)+1, then the value of x^(4)-(1)/(x^(4)) is

    Text Solution

    |

  7. (1)/(sqrt(a))-(1)/(sqrt(b))=0, then the value of (1)/(a)+(1)/(b) is

    Text Solution

    |

  8. If x=(0.25)^((1)/(2)), y=(0.4)^(2), z=(0.216)^((1)/(3)), then

    Text Solution

    |

  9. If a+(1)/(a)=2, then the value of (a^(5)+(1)/(a^(5))) will be

    Text Solution

    |

  10. If x=2+sqrt(3), then the value of (x^(2)-x+1)/(x^(2)+x+1) is :

    Text Solution

    |

  11. If 3a=4b=6c and a+b+c=27sqrt(29) then sqrt(a^(2)+b^(2)+c^(2)) is equal...

    Text Solution

    |

  12. If (sqrt(3)+1)^(2)=x+sqrt(3)y, then the value of (x+y) is

    Text Solution

    |

  13. If p=9, q=sqrt(17) then the value of (p^(2)-q^(2))^((-1)/(3)) is equal...

    Text Solution

    |

  14. If sqrt(1+(x)/(144))=(13)/(12), then x equals to

    Text Solution

    |

  15. If a=sqrt(2)+1 and b=sqrt(2)-1, then the value of (1)/(a+1)+(1)/(b+1) ...

    Text Solution

    |

  16. If x=(1)/((sqrt(2)+1)) then the value of (x^(2)+2x-1) is

    Text Solution

    |

  17. If x+(1)/(x)=sqrt(13), then (3x)/((x^(2)-1)) equals to

    Text Solution

    |

  18. If x+sqrt(5)=5+sqrt(y) and x,y are positive integers , then the value ...

    Text Solution

    |

  19. If c+(1)/(c )=sqrt(3), then the value of c^(3)+(1)/(c^(3)) is equal to

    Text Solution

    |

  20. What would be the remainder when 10^(6)-12 is divided by 9 ?

    Text Solution

    |